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1. Introduction. For definitions and notation in what follows, see [4] and 
[5]. If A is an infinite set and <p(y t • • • yn, R, Yt • • • Ym) = <p(y, R, Y) is a 
second order relation on A, we call \p operative if R is w-ary. For such a <p let 

4= U^U^fy.^kb:^ F)e^U $\'7)\ and ƒ, - Ul}. 

If F is a collection of second order relations (for simplicity collection of opera­
tors) on A, then F-IND2 is the class of all second order relations of the form 
\jj(x, 7) o I (a, x, F), for some operative <p(â, x, R, Y) in F and constants AT 
from A. As in [5] F-IND is the class of all relations on A which are in F-IND2. 
We let F m o n be the collection of all operative <p(y, R, Y) in F which are mono­
tone on R and we put ~ 1 F = { " 1 ^ ^ € F } . A collection of operators F on >1 is 
adequate if it contains all the IlJ(C) second order relations, where C is a coding 
scheme on A and is closed under A, V, 3A and trivial combinatorial substitu­
tions. Let WF(S) o S be a well-founded relation on^4 *> "1 la0axa2 ' ' * 
V/(0.+ 1 , 0 . ) e & 

THEOREM 1. Let F be an adequate collection of operators on an infinite 
set A. IfWFelfandl F C Fmon-IND2, then F-IND2 = Fmon-IND2. 

2. Elementary induction. Let EL be the collection of all the elementary 
second order relations on a structure A = (A, Rx . . . Rt) and let EL+ be the 
subcollection of ELmon consisting of all operative <p(x, R, Y) which are defin­
able by positive in R elementary formulas. One usually writes EL+-IND2 = 
IND2 and EL+-IND = IND. Clearly IND2 C ELmon-IND2 C EL-IND2 and it 
is well known that IND2 is a tiny part of EL-IND2 for (say) almost acceptable 
A's. By a basic result of Kleene and Spector for co and Barwise-Gandy-Moschova-
kis in general (see [4, §8A]), on every countable almost acceptable structure, 
IND2 = ELmon-IND2 (= n{). On the other hand, letting WFn{S) o S is a 
2n-ary relation on A which is well founded (viewed as binary on An), we have 

COROLLARY 1. Let A be an infinite structure such that each WFn is 
elementary. Then ELmon-IND2 = EL-IND2. 

AMS (MOS) subject classifications (1970). Primary 02F27. 

Copyright © 1976, American Mathematical Society 

888 


