ON MONOTONE VS. NONMONOTONE INDUCTION

BY LEO A. HARRINGTON AND ALEXANDER S. KECHRIS

Communicated by S. Feferman, May 11, 1976

1. Introduction. For definitions and notation in what follows, see [4] and [5]. If A is an infinite set and $\varphi(y_1 \cdots y_n, R, Y_1 \cdots Y_m) = \varphi(\overline{y}, R, \overline{Y})$ is a second order relation on A, we call φ operative if R is *n*-ary. For such a φ let

$$I_{\varphi}^{\xi} = \bigcup_{\eta < \xi} I_{\varphi}^{\eta} U \left\{ (\overline{y}, \ \overline{Y}) \colon \varphi \left(\overline{y}, \left\{ \overline{y} \colon (\overline{y}, \ \overline{Y}) \in \bigcup_{\eta < \xi} I_{\varphi}^{\eta} \right\}, \ \overline{Y} \right) \right\} \text{ and } I_{\varphi} = \bigcup_{\xi} I_{\varphi}^{\xi}.$$

If F is a collection of second order relations (for simplicity collection of operators) on A, then F-IND² is the class of all second order relations of the form $\psi(\overline{x}, \overline{Y}) \Leftrightarrow I_{\varphi}(\overline{a}, \overline{x}, \overline{Y})$, for some operative $\varphi(\overline{u}, \overline{x}, R, \overline{Y})$ in F and constants \overline{a} from A. As in [5] F-IND is the class of all relations on A which are in F-IND². We let $F^{m \circ n}$ be the collection of all operative $\varphi(\overline{y}, R, \overline{Y})$ in \overline{F} which are monotone on R and we put $\neg F = \{ \neg \varphi : \varphi \in F \}$. A collection of operators \overline{F} on A is adequate if it contains all the $\Pi_1^0(C)$ second order relations, where C is a coding scheme on A and is closed under \land, \lor, \exists^A and trivial combinatorial substitutions. Let $WF(S) \Leftrightarrow S$ be a well-founded relation on $A \Leftrightarrow \neg \exists a_0 a_1 a_2 \cdots$ $\forall i(a_{i+1}, a_i) \in S$.

THEOREM 1. Let F be an adequate collection of operators on an infinite set A. If $WF \in \neg F$ and $\neg F \subseteq F^{mon}$ -IND², then F-IND² = F^{mon} -IND².

2. Elementary induction. Let EL be the collection of all the elementary second order relations on a structure $A = \langle A, R_1 \dots R_l \rangle$ and let EL^+ be the subcollection of EL^{mon} consisting of all operative $\varphi(\overline{x}, R, \overline{Y})$ which are definable by positive in R elementary formulas. One usually writes EL^+ -IND² = IND² and EL^+ -IND = IND. Clearly IND² $\subseteq EL^{mon}$ -IND² $\subset EL$ -IND² and it is well known that IND² is a tiny part of EL-IND² for (say) almost acceptable A's. By a basic result of Kleene and Spector for ω and Barwise-Gandy-Moschovakis in general (see [4, §8A]), on every *countable* almost acceptable structure, IND² = EL^{mon} -IND² (= Π_1^1). On the other hand, letting $WF^n(S) \Leftrightarrow S$ is a 2n-ary relation on A which is well founded (viewed as binary on A^n), we have

COROLLARY 1. Let A be an infinite structure such that each WF^n is elementary. Then EL^{mon} -IND² = EL-IND².

AMS (MOS) subject classifications (1970). Primary 02F27.