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1. Introduction. In this note we determine the bordism groups An of 
orientation preserving diffeomorphisms of n-dimensional closed oriented smooth 
manifolds. These groups were introduced by W. Browder [1] . Winkelnkemper 
showed that each diffeomorphism of the sphere Sn is nullbordant [7]. On the 
other hand, he showed that A4k + 2 is not finitely generated. Medrano general
ized this result to A4k [5]. For this he introduced a powerful invariant in the 
Witt group W±(Z, Z) (I± in Medrano's notation) of isometries of free finite-di
mensional Z-modules with a symmetric (antisymmetric) unimodular bilinear 
form. The invariant is given by the middle homology modulo torsion, the inter
section form and the isometry induced by the diffeomorphism. For a diffeomor
phism ƒ : M —> M we denote this invariant by I(M, ƒ), the isometric structure of 
(Af, ƒ). It is a bordism invariant and leads to a homomorphism I: A2k —• 
W(_1)k(Z, Z). 

Neumann has shown that the homomorphism I is surjective, that W±(Z9 Z) 
® Q ÊË Q°° and that W±(Z, Z) contains infinitely many summands of orders 2 
and 4 [6]. On the other hand, W±(Z, Z) is a subgroup of W±(Z, Q), the Witt 
group of isometries of finite-dimensional Q-vector spaces. This group plays an 
important role in the computation of bordism groups C2k_x of odd-dimensional 
knots, which can be embedded in W,1)k(Z, Q). It is known that W±(Z, Q) s* 
Z°° 0 Z2 0 Z~ [3]. Thus the group W±(l9 Z) is also of the form Z°° 0 Z^ 0 
Z°° 

It turns out that the isometric structure is essentially the only invariant for 
bordism of diffeomorphisms. 

2. Bordism of odd-dimensional diffeomorphisms. Two diffeomorphisms 
(Mv fx) and (M2, f2) are called bordant if there is a diffeomorphism (N, F) on 
an oriented manifold with boundary such that d(N, F) = (Mv fx) + (-M2, f2). 

The bordism classes [Af1, ƒ] form a group under disjoint sum, called An. 

The mapping torus of a diffeomorphism (Af, ƒ) is Mf = I x M/(O, x) ~ 
(1, fix)). This construction leads to a homomorphism An —• £ln + î ([M, f] H-> 
[Aff]), where £ln + 1 is the ordinary bordism group of oriented manifolds. 

In [4] we proved the following result. 
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