BORDISM OF DIFFEOMORPHISMS

BY M. KRECK

Communicated by P. T. Church, April 28, 1976

1. Introduction. In this note we determine the bordism groups Δ_n of orientation preserving diffeomorphisms of *n*-dimensional closed oriented smooth manifolds. These groups were introduced by W. Browder [1]. Winkelnkemper showed that each diffeomorphism of the sphere S^n is nullbordant [7]. On the other hand, he showed that Δ_{4k+2} is not finitely generated. Medrano generalized this result to Δ_{4k} [5]. For this he introduced a powerful invariant in the Witt group $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ (I_{\pm} in Medrano's notation) of isometries of free finite-dimensional Z-modules with a symmetric (antisymmetric) unimodular bilinear form. The invariant is given by the middle homology modulo torsion, the intersection form and the isometry induced by the diffeomorphism. For a diffeomorphism $f: M \longrightarrow M$ we denote this invariant by I(M, f), the isometric structure of (M, f). It is a bordism invariant and leads to a homomorphism $I: \Delta_{2k} \longrightarrow W_{(-1)k}(\mathbf{Z}, \mathbf{Z})$.

Neumann has shown that the homomorphism *I* is surjective, that $W_{\pm}(\mathbf{Z}, \mathbf{Z}) \otimes \mathbf{Q} \cong \mathbf{Q}^{\infty}$ and that $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ contains infinitely many summands of orders 2 and 4 [6]. On the other hand, $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ is a subgroup of $W_{\pm}(\mathbf{Z}, \mathbf{Q})$, the Witt group of isometries of finite-dimensional **Q**-vector spaces. This group plays an important role in the computation of bordism groups C_{2k-1} of odd-dimensional knots, which can be embedded in $W_{(-1)k}(\mathbf{Z}, \mathbf{Q})$. It is known that $W_{\pm}(\mathbf{Z}, \mathbf{Q}) \cong$ $\mathbf{Z}^{\infty} \oplus \mathbf{Z}^{\infty}_{2} \oplus \mathbf{Z}^{\infty}_{4}$ [3]. Thus the group $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ is also of the form $\mathbf{Z}^{\infty} \oplus \mathbf{Z}^{\infty}_{2} \oplus$ \mathbf{Z}^{∞}_{4} .

It turns out that the isometric structure is essentially the only invariant for bordism of diffeomorphisms.

2. Bordism of odd-dimensional diffeomorphisms. Two diffeomorphisms (M_1, f_1) and (M_2, f_2) are called bordant if there is a diffeomorphism (N, F) on an oriented manifold with boundary such that $\partial(N, F) = (M_1, f_1) + (-M_2, f_2)$. The bordism classes $[M^n, f]$ form a group under disjoint sum, called Δ_n .

The mapping torus of a diffeomorphism (M, f) is $M_f = I \times M/(0, x) \sim (1, f(x))$. This construction leads to a homomorphism $\Delta_n \to \Omega_{n+1}$ ($[M, f] \mapsto [M_f]$), where Ω_{n+1} is the ordinary bordism group of oriented manifolds.

In [4] we proved the following result.

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 57D90.