BOUNDS ON THE EIGENVALUES OF THE LAPLACE AND SCHROEDINGER OPERATORS

BY ELLIOTT LIEB ${ }^{1}$

Communicated by I. M. Singer, April 19, 1976
If Ω is an open set in \mathbf{R}^{n}, and if $\tilde{N}(\Omega, \lambda)$ is the number of eigenvalues of $-\Delta$ (with Dirichlet boundary conditions on $\partial \Omega$) which are $\leqslant \lambda(\lambda \geqslant 0)$, one has the asymptotic formula of Weyl [1], [2]: $\lim _{\lambda \rightarrow \infty} \lambda^{-n / 2} \widetilde{N}(\Omega, \lambda)=C_{n}|\Omega|$. Here $|\Omega|$ is the volume of Ω and $C_{n}=(4 \pi)^{-n / 2} \Gamma(1+n / 2)^{-1}$. The same holds [3] if \mathbf{R}^{n} is replaced by a Riemannian manifold, M, with $|\Omega|$ being the Riemannian volume and Δ being the Laplace-Beltrami operator. One purpose of this note is to state that there often exist bounds of the form

$$
\begin{align*}
& \widetilde{N}(\Omega, \lambda) \leqslant D_{n} \lambda^{n / 2}|\Omega|, \forall \lambda \geqslant 0, \forall \Omega \subset M \tag{1a}\\
& \widetilde{N}(\Omega, \lambda) \leqslant\left(D_{n} \lambda^{n / 2}+E_{n}\right)|\Omega|, \quad \forall \lambda \geqslant 0, \forall \Omega \subset M \tag{1b}
\end{align*}
$$

with D_{n}, E_{n} independent of λ and Ω and depending only on M. (1a) holds for noncompact M if condition (8), below, holds. In particular, (1a) holds for \mathbf{R}^{n} and for homogeneous spaces with curvature $\leqslant 0$. (1b) always holds for compact M, and it also holds for noncompact M if condition (9) holds.

Remark. There is an asymptotic formula [4], [5]: $\widetilde{N}(\Omega, \lambda)=$ $C_{n} \lambda^{n / 2}|\Omega|+O\left(\lambda^{(n-1) / 2}\right)$. While this has the correct limiting constant, C_{n}, the remainder, $O(\cdot)$, can get very large if Ω is very irregular. The remainder is not bounded by a universal constant times $|\Omega| \lambda^{(n-1) / 2}$ or even $|\Omega| \lambda^{n / 2}$. Our emphasis is different. By introducing $D_{n} \geqslant C_{n}$ we have a bound which is universal in the sense that it depends on M but not on $\Omega \subset M$; in particular, (1) is applicable to unbounded Ω.

A second, closely related problem is to estimate $N_{\alpha}(V)=$ number of nonpositive eigenvalues of the Schroedinger operator $-\Delta+V(x)$ on $L^{2}(M)$ which are $\leqslant \alpha \leqslant 0$. There exists an asymptotic formula [6], [7], [8] for suitably regular V :

$$
\begin{equation*}
\lim _{\gamma \rightarrow \infty} \gamma^{-n / 2} N_{\gamma \alpha}(\gamma V)=C_{n} \int_{M}[V(x)-\alpha]_{-}^{n / 2} d x \tag{2}
\end{equation*}
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 58G99, 35J05, 35J10, 35P15, 35P20; Secondary 47F05, 81 A09, 81 A 45.
 ${ }^{1}$ Work supported by U. S. National Science Foundation grant MCS 75-21684.

