BOUNDS ON THE EIGENVALUES OF THE LAPLACE AND SCHROEDINGER OPERATORS

BY ELLIOTT LIEB¹

Communicated by I. M. Singer, April 19, 1976

If Ω is an open set in \mathbb{R}^n , and if $\widetilde{N}(\Omega, \lambda)$ is the number of eigenvalues of $-\Delta$ (with Dirichlet boundary conditions on $\partial\Omega$) which are $\leq \lambda$ ($\lambda \geq 0$), one has the *asymptotic* formula of Weyl [1], [2]: $\lim_{\lambda \to \infty} \lambda^{-n/2} \widetilde{N}(\Omega, \lambda) = C_n |\Omega|$. Here $|\Omega|$ is the volume of Ω and $C_n = (4\pi)^{-n/2} \Gamma(1 + n/2)^{-1}$. The same holds [3] if \mathbb{R}^n is replaced by a Riemannian manifold, M, with $|\Omega|$ being the Riemannian volume and Δ being the Laplace-Beltrami operator. One purpose of this note is to state that there often exist bounds of the form

(1a) $\widetilde{N}(\Omega, \lambda) \leq D_n \lambda^{n/2} |\Omega|, \forall \lambda \geq 0, \forall \Omega \subset M,$

(1b)
$$\widetilde{N}(\Omega, \lambda) \leq (D_n \lambda^{n/2} + E_n) |\Omega|, \quad \forall \lambda \ge 0, \forall \Omega \subset M,$$

with D_n , E_n independent of λ and Ω and depending only on M. (1a) holds for noncompact M if condition (8), below, holds. In particular, (1a) holds for \mathbb{R}^n and for homogeneous spaces with curvature ≤ 0 . (1b) always holds for compact M, and it also holds for noncompact M if condition (9) holds.

REMARK. There is an asymptotic formula [4], [5]: $\widetilde{N}(\Omega, \lambda) = C_n \lambda^{n/2} |\Omega| + O(\lambda^{(n-1)/2})$. While this has the correct limiting constant, C_n , the remainder, $O(\cdot)$, can get very large if Ω is very irregular. The remainder is not bounded by a universal constant times $|\Omega|\lambda^{(n-1)/2}$ or even $|\Omega|\lambda^{n/2}$. Our emphasis is different. By introducing $D_n \ge C_n$ we have a bound which is universal in the sense that it depends on M but not on $\Omega \subset M$; in particular, (1) is applicable to unbounded Ω .

A second, closely related problem is to estimate $N_{\alpha}(V)$ = number of nonpositive eigenvalues of the Schroedinger operator $-\Delta + V(x)$ on $L^{2}(M)$ which are $\leq \alpha \leq 0$. There exists an asymptotic formula [6], [7], [8] for suitably regular V:

(2)
$$\lim_{\gamma \to \infty} \gamma^{-n/2} N_{\gamma \alpha}(\gamma V) = C_n \int_M \left[V(x) - \alpha \right]_{-}^{n/2} dx$$

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 58G99, 35J05, 35J10, 35P15, 35P20; Secondary 47F05, 81A09, 81A45.

¹Work supported by U. S. National Science Foundation grant MCS 75-21684.