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If 12 is an open set in R", and if N(£l, X) is the number of eigenvalues of 
- A (with Dirichlet boundary conditions on d£2) which are < X (k > 0), one 
has the asymptotic formula of Weyl [1] , [2] : l i m ^ ^ X~n/2N(Sl, A) = Cn l « l . 
Here 1121 is the volume of SI and Cn = (47r)~~n/2r(l + njiy1. The same holds 
[3] if R" is replaced by a Riemannian manifold, M, with 1121 being the Rieman-
nian volume and A being the Laplace-Beltrami operator. One purpose of this 
note is to state that there often exist bounds of the form 

(la) N(a9 X) < Dn\
nl2 1121, VX > 0, V12 C M, 

(lb) #(12, X) < (Dn\
nl2 +En)\Sl\, V X > 0 , V l 2 C M , 

with Dn, En independent of X and 12 and depending only on M. (la) holds for 
noncompact M if condition (8), below, holds. In particular, (la) holds for R" 
and for homogeneous spaces with curvature < 0. (lb) always holds for compact 
M, and it also holds for noncompact M if condition (9) holds. 

REMARK. There is an asymptotic formula [4] , [5] : 7V(12, X) = 

CnX
n/2 1121 + <9(X("~1)/2). While this has the correct limiting constant, C„, the 

remainder, O(-), can get very large if 12 is very irregular. The remainder is not 
bounded by a universal constant times IlilX^""1^2 or even inlX"/2. Our em
phasis is different. By introducing Dn > Cn we have a bound which is universal 
in the sense that it depends on M but not on 12 C M ; in particular, (1) is appli
cable to unbounded 12. 

A second, closely related problem is to estimate Na(V) — number of non-
positive eigenvalues of the Schroedinger operator - A + V{x) on L2(M) which 
are < a < 0. There exists an asymptotic formula [6] , [7] , [8] for suitably 
regular V: 

( 2 ) lim y-">2Nya(yV) = Cn fM [V(x) - a]"J2 dx 
'y—•oo 

AMS (MOS) subject classifications (1970). Primary 58G99, 35J05, 35J10, 35P15, 
35P20; Secondary 47F05, 81A09, 81A45. 

1Work supported by U. S. National Science Foundation grant MCS 75-21684. 

Copyright © 1976, American Mathematical Society 

751 


