LOCAL GEVREY AND QUASI-ANALYTIC HYPOELLIPTICITY FOR □₅

BY DAVID S. TARTAKOFF1

Communicated by Daniel W. Stroock, May 27, 1976

Introduction. The $\overline{\partial}_b$ complex is well defined on any smooth CR manifold M, and once a metric is fixed, so is the complex Laplace-Beltrami operator \Box_b on forms of type (p, q). For compact M without boundary, the $\overline{\partial}_b$ cohomology of M may be studied via \Box_b [6], and thus local smoothness of solutions to $\Box_b u = f$ is important. In its own right, \Box_b is a prototype of doubly characteristic operators. Under suitable convexity conditions on M, Kohn [7] established the following subelliptic estimate on (p, q) forms in $C_0^\infty(M)$:

$$\|\varphi\|_{\mathcal{U}}^2 \leq C(\Box_h \varphi, \varphi) + C' \|\varphi\|_0^2,$$

and in general such estimates imply C^{∞} and Gevrey $(G^s, s \ge 2)$ hypoellipticity locally [3], [8], [10] and no more [1]. In the special case of the Heisenberg group, Folland and Stein [5] found an explicit fundamental solution which gives local analytic hypoellipticity; while, in general, if M is compact, satisfies the convexity condition Y(q) of Kohn, and has an invertible Levi form, the author proved \Box_b is globally analytic hypoelliptic and so is the $\overline{\partial}$ -Neumann problem (joint work with M. Derridj, cf. [4], [9]).

In this note we assume Y(q) and the invertibility of the Levi form and prove local regularity in all Gevrey classes G^s with s > 1 as well as in a quasi-analytic class. Full details will appear elsewhere.

Notations and definitions. The class $C^L(\Omega) \subset C^{\infty}(\Omega)$, Ω open in \mathbb{R}^n , is defined by the condition that for all $K \subset \Omega$ there exists a constant $C_{f,K}$ such that for any multi-index α ,

$$\sup_{K} |D^{\alpha} f| \leq C_{f,K}^{|\alpha|+1} L(|\alpha|)^{|\alpha|},$$

where we assume that the sequence $\{L(j)\}$ of positive numbers satisfies (1) L(j)/j is nondecreasing and (2) $L(j+1)^{j+1} \leq C^j L(j)^j$ uniformly in j. The second condition implies that $C^L(\Omega)$ is closed under differentiation while the first implies that the class is preserved under composition. Thus one may speak of C^L manifolds. If, in addition, $\Sigma L(j)^{-1} < \infty$, the class is called non-quasi-analytic (NQA) and admits compactly supported functions. Common examples are the Gevrey classes $G^s(\Omega)$, obtained by taking $L(j) = j^s$. These are NQA if s > 1, while

AMS (MOS) subject classifications (1970). Primary 32F10, 35H05.

¹Partially supported by NSF MPS 72-05055 A03.