ELLIPTIC PSEUDO DIFFERENTIAL OPERATORS DEGENERATE ON A SYMPLECTIC SUBMANIFOLD

BY BERNARD HELFFER AND LUIGI RODINO Communicated by Robert T. Seeley, April 12, 1976

1. Introduction. This note is concerned with the classes of pseudo differential operators $L^{m,M}(\Omega, \Sigma)$, Σ symplectic submanifold of codimension 2, in Sjöstrand [4]; the definitions of P in $L^{m,M}(\Omega, \Sigma)$ and of the associated winding number N are recalled in §2. In Helffer [2] the study of the hypoellipticity of P is reduced to the analysis of the bounded solutions of an ordinary differential equation. Here we deduce an explicit result for N = 2 - M: essentially, we can prove that in this case all the bounded solutions are products of an exponential function with polynomials.

2. The classes $L^{m,M}(\Omega, \Sigma)$ and the winding number. Let $\Omega \subset \mathbb{R}^n$ be an open set. Let $\Sigma \subset T^*(\Omega) \setminus 0$ be a closed conic symplectic submanifold of codimension 2 (Σ symplectic means that the restriction of the symplectic form $\omega = \Sigma d\xi_s \wedge dx_s$ to Σ is nondegenerate). $L^{m,M}(\Omega, \Sigma)$ is the set of all the pseudo differential operators P which have a symbol of the form

(1)
$$p(x, \xi) \sim \sum_{j=0}^{\infty} p_{m-j/2}(x, \xi),$$

where $p_{m-j/2}$ is positively homogeneous of degree m-j/2 and for every $K \subset \Omega$ there exists a constant C_K such that

(2)
$$|p_m(x, \xi)|/|\xi|^m \ge C_K^{-1} d_{\Sigma}^M(x, \xi),$$

(3)
$$|p_{m-j/2}(x, \xi)|/|\xi|^{m-j/2} \leq C_K d_{\Sigma}^{M-j}(x, \xi), \quad 0 \leq j \leq M,$$

for all $(x, \xi) \in K \times \mathbb{R}^n$, $|\xi| > 1$ $(d_{\Sigma}(x, \xi)$ is the distance from $(x, \xi/|\xi|)$ to Σ).

Fix ρ in Σ , denote by $N_{\rho}(\Sigma)$ the orthogonal space of $T_{\rho}(\Sigma)$ with respect to ω and choose two linear coordinates on $N_{\rho}(\Sigma) u_1$, u_2 such that $\omega/N_{\rho}(\Sigma) = du_2 \wedge du_1$. Take $X = (u_1, u_2) \in N_{\rho}(\Sigma)$ and let V be any vector field on $T^*(\Omega)$ equal to X at ρ . We define the homogeneous polynomial

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 35H05, 35S05.

Key words and phrases. Pseudo differential operators, classes $L^{m,M}(\Omega, \Sigma)$, symplectic submanifold, winding number.