ELLIPTIC PSEUDO DIFFERENTIAL OPERATORS DEGENERATE ON A SYMPLECTIC SUBMANIFOLD

BY BERNARD HELFFER AND LUIGI RODINO

Communicated by Robert T. Seeley, April 12, 1976

1. Introduction. This note is concerned with the classes of pseudo differential operators $L^{m, M}(\Omega, \Sigma), \Sigma$ symplectic submanifold of codimension 2 , in Sjöstrand [4]; the definitions of P in $L^{m, M}(\Omega, \Sigma)$ and of the associated winding number N are recalled in $\S 2$. In Helffer [2] the study of the hypoellipticity of P is reduced to the analysis of the bounded solutions of an ordinary differential equation. Here we deduce an explicit result for $N=2-M$: essentially, we can prove that in this case all the bounded solutions are products of an exponential function with polynomials.
2. The classes $L^{m, M}(\Omega, \Sigma)$ and the winding number. Let $\Omega \subset \mathbf{R}^{n}$ be an open set. Let $\Sigma \subset T^{*}(\Omega) \backslash 0$ be a closed conic symplectic submanifold of codimension 2 (Σ symplectic means that the restriction of the symplectic form $\omega=\Sigma d \xi_{s} \wedge d x_{s}$ to Σ is nondegenerate). $L^{m, M}(\Omega, \Sigma)$ is the set of all the pseudo differential operators P which have a symbol of the form

$$
\begin{equation*}
p(x, \xi) \sim \sum_{j=0}^{\infty} p_{m-j / 2}(x, \xi) \tag{1}
\end{equation*}
$$

where $p_{m-j / 2}$ is positively homogeneous of degree $m-j / 2$ and for every $K \subset \subset$ Ω there exists a constant C_{K} such that

$$
\begin{equation*}
\left|p_{m}(x, \xi)\right| /|\xi|^{m} \geqslant C_{K}^{-1} d_{\Sigma}^{M}(x, \xi) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left|p_{m-j / 2}(x, \xi)\right| /|\xi|^{m-j / 2} \leqslant C_{K} d_{\Sigma}^{M-j}(x, \xi), \quad 0 \leqslant j \leqslant M \tag{3}
\end{equation*}
$$

for all $(x, \xi) \in K \times \mathbf{R}^{n},|\xi|>1\left(d_{\Sigma}(x, \xi)\right.$ is the distance from $(x, \xi /|\xi|)$ to $\left.\Sigma\right)$.
Fix ρ in Σ, denote by $N_{\rho}(\Sigma)$ the orthogonal space of $T_{\rho}(\Sigma)$ with respect to ω and choose two linear coordinates on $N_{\rho}(\Sigma) u_{1}, u_{2}$ such that $\omega / N_{\rho}(\Sigma)=$ $d u_{2} \wedge d u_{1}$. Take $X=\left(u_{1}, u_{2}\right) \in N_{\rho}(\Sigma)$ and let V be any vector field on $T^{*}(\Omega)$ equal to X at ρ. We define the homogeneous polynomial

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 35H05, 35S05.
 Key words and phrases. Pseudo differential operators, classes $L^{m, M}(\Omega, \Sigma)$, symplectic submanifold, winding number.

