STABILITY AND GROWTH ESTIMATES FOR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS IN HILBERT SPACE

BY FREDERICK BLOOM

Communicated by James H. Bramble, February 20, 1976

Let H, H_+ be real Hilbert spaces with H_+ dense in H and $H_+ \subset H$, algebraically and topologically; the inner products on H, H_+ are denoted by \langle , \rangle and \langle , \rangle_+ , respectively. As in [1], let H_- denote the dual of H_+ via the inner product of H so that H_- is the completion of H under the norm

$$\|\mathbf{w}\|_{-} = \sup_{\mathbf{v} \in H_{+}} \frac{|\langle \mathbf{v}, \mathbf{w} \rangle|}{\|\mathbf{v}\|_{+}}.$$

By $L(H_+, H_-)$ we denote the space of bounded linear operators from H_+ to H_- . For $0 \le t < T$, T > 0 an arbitrary real number, we consider the initial-value problem

(1)
$$\mathbf{u}_{tt} - \mathbf{N}\mathbf{u} + \int_{-\infty}^{t} \mathbf{K}(t-\tau)\mathbf{u}(\tau)d\tau = \mathbf{0},$$

(2)
$$\mathbf{u}(0) = \mathbf{f}, \quad \mathbf{u}_{t}(0) = \mathbf{g},$$

where $N \in L(H_+, H_-)$ is symmetric and K(t), $K_t(t) \in L^2((-\infty, \infty); L(H_+, H_-))$. We also assume that

(3)
$$\mathbf{u}(\tau) = \mathbf{U}(\tau), \quad -\infty < \tau < 0,$$

where $\mathbf{U}(t) \in C^1((-\infty, 0); H_+)$ is prescribed and satisfies $\lim_{t \to 0^-} \mathbf{U}(t) = \mathbf{f}$, $\lim_{t \to 0^-} \mathbf{U}_t(t) = \mathbf{g}$, $\lim_{t \to -\infty} \|\mathbf{U}(t)\|_+ = 0$ and $\int_{-\infty}^0 \|\mathbf{U}(t)\|_+ dt < \infty$.

In [2] we have proved the following basic result concerning solutions $\mathbf{u} \in C^2([0, T); H_+)$ for which $\mathbf{u}_t \in C^1([0, T); H_+)$ and $\mathbf{u}_{tt} \in C([0, T); H_-)$. Let

$$N = \left\{ \mathbf{w} \in C^{2}([0, T]; H_{+}) | \sup_{[0, T)} \|\mathbf{w}(t)\|_{+} \leq N^{2} \right\}$$

for some real number N. Then we have

THEOREM (BLOOM [2]). Let $u \in N$ be any solution of (1)–(3) and define

$$F(t; \beta, t_0) = \|\mathbf{u}(t)\|^2 + \beta(t + t_0)^2, \quad 0 \le t < T,$$

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 47G05; Secondary 45K05, 45N05. Key words and phrases. Intergrodifferential equation, logarithmic convexity, stability, growth estimates.