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1. Introduction. The author [2] , [3], and [4] has previously studied the 
equation 

(1) Lu = \u + 77(X, u) 

in a real Banach space B where L is linear and H is compact and oQ\u ||)is 
uniformly on bounded X intervals. In that setting, if X0 is an isolated normal 
eigenvalue of L having odd algebraic multiplicity, then (X0, 0) E R x B is a bi­
furcation point for (1). Moreover, a continuous branch of solutions emanates 
from each of these points and obeys a threefold alternative. 

This paper combines methods of the author and Stuart [7] to show that 
similar results hold if H(X, ü) is merely continuous and oQ\u ||) uniformly on 
bounded X intervals. 

2. Preliminaries. In this paper all work is a real Banach space B. L de­
notes a linear operator densely defined in B, and H represents a continuous oper­
ator that is o(\\ u ||) near u — 0 uniformly on bounded X intervals. Define the 
essential spectrum of L as the members of the spectrum of L which are not 
isolated normal eigenvalues of L and denote this set by e(L). 

We consider a normal eigenvalue X0 of L. Let 

ocXo = sup {y \y G e(L), y < X0 } and 0XQ = inf {7 I7 e e(L)> 7 > xo > 

respectively if the corresponding sup or inf exists. Otherwise, set ax = - 00 a nd/ 
or j3x = + oo. Assume for now that as and öx are both finite. For e > 0, 
the only members of the spectrum of L in (o^ 4- e, j3̂  - e) are normal eigen­
values of L. If Pe denotes the projector onto the direct sum of the eigenspaces 
of these eigenvalues and Q€ — I - P€, then it has been shown [2] , [3] and [4] 
that 

(L-n0)P€u I P€ \ 

X-M 0 \ X-Mo/ 

is equivalent to (1) for X in [ax + e, ]3X - e] and JU0 any member of the re­
solvent of L not lying in (aK , |3X ) ((L - X)"1 is defined on QeB). 
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