GLOBAL BIFURCATION THEOREMS FOR NONLINEARLY PERTURBED OPERATOR EQUATIONS

BY JOHN MACBAIN

Communicated by R. K. Miller, February 3, 1976

1. Introduction. The author [2], [3], and [4] has previously studied the equation

(1)
$$Lu = \lambda u + H(\lambda, u)$$

in a real Banach space B where L is linear and H is compact and o(||u||) is uniformly on bounded λ intervals. In that setting, if λ_0 is an isolated normal eigenvalue of L having odd algebraic multiplicity, then $(\lambda_0, 0) \in R \times B$ is a bifurcation point for (1). Moreover, a continuous branch of solutions emanates from each of these points and obeys a threefold alternative.

This paper combines methods of the author and Stuart [7] to show that similar results hold if $H(\lambda, u)$ is merely continuous and o(||u||) uniformly on bounded λ intervals.

2. **Preliminaries.** In this paper all work is a real Banach space *B*. *L* denotes a linear operator densely defined in *B*, and *H* represents a continuous operator that is o(||u||) near u = 0 uniformly on bounded λ intervals. Define the essential spectrum of *L* as the members of the spectrum of *L* which are not isolated normal eigenvalues of *L* and denote this set by e(L).

We consider a normal eigenvalue λ_0 of L. Let

$$\alpha_{\lambda_0} = \sup \{\gamma \mid \gamma \in e(L), \, \gamma < \lambda_0 \} \text{ and } \beta_{\lambda_0} = \inf \{\gamma \mid \gamma \in e(L), \, \gamma > \lambda_0 \}$$

respectively if the corresponding sup or inf exists. Otherwise, set $\alpha_{\lambda_0} = -\infty$ and/ or $\beta_{\lambda_0} = +\infty$. Assume for now that α_{λ_0} and β_{λ_0} are both finite. For $\epsilon > 0$, the only members of the spectrum of L in $(\alpha_{\lambda_0} + \epsilon, \beta_{\lambda_0} - \epsilon)$ are normal eigenvalues of L. If P_{ϵ} denotes the projector onto the direct sum of the eigenspaces of these eigenvalues and $Q_{\epsilon} = I - P_{\epsilon}$, then it has been shown [2], [3] and [4] that

(2)
$$u = \frac{(L-\mu_0)P_{\epsilon}u}{\lambda-\mu_0} + \left((L-\lambda)^{-1}Q_{\epsilon} - \frac{P_{\epsilon}}{\lambda-\mu_0}\right)H(\lambda, u)$$

is equivalent to (1) for λ in $[\alpha_{\lambda_0} + \epsilon, \beta_{\lambda_0} - \epsilon]$ and μ_0 any member of the resolvent of L not lying in $(\alpha_{\lambda_0}, \beta_{\lambda_0})$ $((L - \lambda)^{-1}$ is defined on $Q_{\epsilon}B$).

AMS (MOS) subject classifications (1970). Primary 46N05.

Copyright © 1976, American Mathematical Society