GLOBAL BIFURCATION THEOREMS FOR NONLINEARLY PERTURBED OPERATOR EQUATIONS

BY JOHN MACBAIN
Communicated by R. K. Miller, February 3, 1976

1. Introduction. The author [2] , [3], and [4] has previously studied the equation

$$
\begin{equation*}
L u=\lambda u+H(\lambda, u) \tag{1}
\end{equation*}
$$

in a real Banach space B where L is linear and H is compact and $o(\|u\|)$ is uniformly on bounded λ intervals. In that setting, if λ_{0} is an isolated normal eigenvalue of L having odd algebraic multiplicity, then $\left(\lambda_{0}, 0\right) \in R \times B$ is a bifurcation point for (1). Moreover, a continuous branch of solutions emanates from each of these points and obeys a threefold alternative.

This paper combines methods of the author and Stuart [7] to show that similar results hold if $H(\lambda, u)$ is merely continuous and $o(\|u\|)$ uniformly on bounded λ intervals.
2. Preliminaries. In this paper all work is a real Banach space B. L denotes a linear operator densely defined in B, and H represents a continuous operator that is $o(\|u\|)$ near $u=0$ uniformly on bounded λ intervals. Define the essential spectrum of L as the members of the spectrum of L which are not isolated normal eigenvalues of L and denote this set by $e(L)$.

We consider a normal eigenvalue λ_{0} of L. Let

$$
\alpha_{\lambda_{0}}=\sup \left\{\gamma \mid \gamma \in e(L), \gamma<\lambda_{0}\right\} \quad \text { and } \quad \beta_{\lambda_{0}}=\inf \left\{\gamma \mid \gamma \in e(L), \gamma>\lambda_{0}\right\}
$$

respectively if the corresponding sup or inf exists. Otherwise, set $\alpha_{\lambda_{0}}=-\infty$ and/ or $\beta_{\lambda_{0}}=+\infty$. Assume for now that $\alpha_{\lambda_{0}}$ and $\beta_{\lambda_{0}}$ are both finite. For $\epsilon>0$, the only members of the spectrum of L in $\left(\alpha_{\lambda_{0}}+\epsilon, \beta_{\lambda_{0}}-\epsilon\right)$ are normal eigenvalues of L. If P_{ϵ} denotes the projector onto the direct sum of the eigenspaces of these eigenvalues and $Q_{\epsilon}=I-P_{\epsilon}$, then it has been shown [2], [3] and [4] that

$$
\begin{equation*}
u=\frac{\left(L-\mu_{0}\right) P_{\epsilon} u}{\lambda-\mu_{0}}+\left((L-\lambda)^{-1} Q_{\epsilon}-\frac{P_{\epsilon}}{\lambda-\mu_{0}}\right) H(\lambda, u) \tag{2}
\end{equation*}
$$

is equivalent to (1) for λ in $\left[\alpha_{\lambda_{0}}+\epsilon, \beta_{\lambda_{0}}-\epsilon\right]$ and μ_{0} any member of the resolvent of L not lying in $\left(\alpha_{\lambda_{0}}, \beta_{\lambda_{0}}\right)\left((L-\lambda)^{-1}\right.$ is defined on $\left.Q_{\epsilon} B\right)$.

