EXISTENCE, UNIQUENESS, STABILITY FOR A SIMPLE FLUID WITH FADING MEMORY

BY MARSHALL SLEMROD

Communicated by R. K. Miller, February 3, 1976

Let Ω be a bounded domain in \mathbb{R}^3 with smooth boundary Γ . Let $v_i(\mathbf{x}, t)$ denote the velocity at a point $\mathbf{x} \in \Omega$ at time t of a simple fluid with fading memory when the strain relative to some fixed configuration is small (see [1, p. 90]). We assume the fluid is incompressible with density unity. Denote the stress tensor as S_{ij} , δ_{ij} the Kronecker delta, \cdot to be $\partial/\partial t$. Consistent with [1] we choose as our constitutive equation

(1)
$$S_{ij} + p\delta_{ij} = 2\int_0^\infty m(s) [E_{ij}(t-s) - E_{ij}(t)] ds$$

where p is an indeterminate pressure, m(s) a material function, E_{ij} the infinitesimal strain tensor. We are considering only a linear theory and must of consistency linearize the basic equation of motion,

(2)
$$\dot{v}_i + v_{i,j}v_j = S_{ij,j}$$
 in Ω ,

to obtain as a linear model of a simple incompressible fluid with fading memory obeying (1), the equations:

(3a)
$$\dot{v}_i = -p_{,i} + \int_0^\infty G(s) v_{i,jj}(t-s) \, ds \quad \text{in } \Omega,$$

(3b)
$$v_{j,j} = 0$$
 in Ω (incompressibility),

(3c)
$$v_i = 0$$
 on Γ (viscous boundary condition),

(3d)
$$v_j(\mathbf{x}, \tau) = v_j^0(\mathbf{x}, \tau), \quad \mathbf{x} \in \Omega, -\infty < \tau \le 0$$

 $(v_i^0(\mathbf{x}, \tau)$ the initial velocity history).

Here m(s) = dG(s)/ds where G(s) is the shear relaxation modulus, $G(s) \rightarrow 0$ as $s \rightarrow \infty$.

Joseph [2] has noted that no mathematical theory presently exists for system (3a)-(3d). We have proven a positive existence, uniqueness, stability result in the case

AMS (MOS) subject classifications (1970). Primary 76A10, 34J99, 35Q99; Secondary 47D05.

Key words and phrases. Simple fluid, stability, fading memory, contraction semigroup. Copyright © 1976, American Mathematical Society