RESEARCH ANNOUNCEMENTS

THE PRINCIPAL SYMBOL OF A DISTRIBUTION

BY ALAN WEINSTEIN ${ }^{1}$
Communicated by Shing S. Chern, January 2, 1976

In Hörmander's theory of Fourier integral operators [1], a principal symbol is constructed for a certain class of distributions in such a way that, when the construction is applied to the Schwartz kernel of a pseudodifferential operator, one obtains the usual principal symbol of the operator. In this note, we describe a generalization of Hörmander's construction which may be applied to an arbitrary distribution on a manifold. Details will appear in [4].

1. Local definition and invariance properties. For a complex vector space V, we define V-valued distributions on \mathbf{R}^{n} by taking as test functions objects of the form $u=u(x) d x$, where $u(x)$ is a compactly supported C^{∞} function with values in V^{*}, and $d x$ is the density $\left|d x_{1} \wedge \cdots \wedge d x_{n}\right|$. For $\tau>0$, we define u_{τ} to be $u(\tau x) d x$. If g is a V-valued distribution, and φ is a C^{∞} function with $\varphi(0)$ $=0$, we define the family $\left\{g_{\tau}^{\varphi}\right\}_{\tau>0}$ of distributions by

$$
\begin{equation*}
\left\langle g_{\tau}^{\varphi}, u\right\rangle=\left\langle g, e^{-i \tau \varphi} u_{\sqrt{\tau}}\right\rangle \tag{1}
\end{equation*}
$$

For $N \in \mathbf{R}$, we write $g_{\tau}^{\varphi} \in O\left(\tau^{N}\right)$ if $\tau^{-N} g_{\tau}^{\varphi}$ remains bounded in distribution space [3] as $\tau \rightarrow \infty$.

Lemma. For every g and $\varphi, g_{\tau}^{\varphi} \in O\left(\tau^{N}\right)$ for some $N \in \mathbf{R}$.
Definition. $\inf \left\{N \mid g_{\tau}^{\varphi} \in O\left(\tau^{N}\right)\right\} \in[-\infty, \infty)$ is called the order of g at φ and denoted by $O_{\varphi}(g){ }^{2}$

Theorem 1. (a) If $O_{\varphi}(g) \leqslant N$ and $\psi(x)=\varphi(x)+\Sigma a_{j k} x_{j} x_{k}+O\left(x^{3}\right)$, then $g_{\tau}^{\psi}-e^{-i \Sigma a_{j k} x_{j} x} g_{\tau}^{\varphi} \in O\left(\tau^{N-1 / 2}\right)$.
(b) If $O_{\varphi}(g) \leqslant N$ and A is a C^{∞} function with values in $\operatorname{Hom}(V, V)$, then $(A g)_{t}^{\varphi}-A(0) g_{\tau}^{\varphi} \in O\left(\tau^{N-1 / 2}\right)$.
(c) If $O_{\varphi}(g) \leqslant N$ and $\theta: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a diffeomorphism with $\theta(0)=0$, then $\left(\theta^{*} g\right)_{\tau}^{\theta * \varphi}-\left(T_{0} \theta\right) *\left(g_{\tau}^{\varphi}\right) \in O\left(\tau^{N-1 / 2}\right)$.

Definition. If $O_{\varphi}(g) \leqslant N$, the class of $\tau^{-N} g_{\tau}^{\varphi}$ modulo $O\left(\tau^{-1 / 2}\right)$ is called the principal symbol of order N for g at φ.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 46F10; Secondary 58G15.
 ${ }_{1}$ Partially supported by the National Science Foundation.
 2 See final note added in proof.

