RESEARCH ANNOUNCEMENTS

THE PRINCIPAL SYMBOL OF A DISTRIBUTION

BY ALAN WEINSTEIN¹

Communicated by Shing S. Chern, January 2, 1976

In Hörmander's theory of Fourier integral operators [1], a principal symbol is constructed for a certain class of distributions in such a way that, when the construction is applied to the Schwartz kernel of a pseudodifferential operator, one obtains the usual principal symbol of the operator. In this note, we describe a generalization of Hörmander's construction which may be applied to an arbitrary distribution on a manifold. Details will appear in [4].

1. Local definition and invariance properties. For a complex vector space V, we define V-valued distributions on \mathbb{R}^n by taking as test functions objects of the form u = u(x) dx, where u(x) is a compactly supported C^{∞} function with values in V^* , and dx is the density $|dx_1 \wedge \cdots \wedge dx_n|$. For $\tau > 0$, we define u_{τ} to be $u(\tau x) dx$. If g is a V-valued distribution, and φ is a C^{∞} function with $\varphi(0) = 0$, we define the family $\{g^{\varphi}_{\tau}\}_{\tau > 0}$ of distributions by

(1)
$$\langle g^{\varphi}_{\tau}, u \rangle = \langle g, e^{-i\tau\varphi}u_{\sqrt{\tau}} \rangle.$$

For $N \in \mathbf{R}$, we write $g_{\tau}^{\varphi} \in O(\tau^N)$ if $\tau^{-N} g_{\tau}^{\varphi}$ remains bounded in distribution space [3] as $\tau \to \infty$.

LEMMA. For every g and φ , $g^{\varphi}_{\tau} \in O(\tau^N)$ for some $N \in \mathbf{R}$.

DEFINITION. inf $\{N|g^{\varphi}_{\tau} \in O(\tau^N)\} \in [-\infty, \infty)$ is called the order of g at φ and denoted by $O_{\alpha}(g)$.²

THEOREM 1. (a) If $O_{\varphi}(g) \leq N$ and $\psi(x) = \varphi(x) + \sum a_{jk} x_j x_k + O(x^3)$, then $g_{\tau}^{\psi} - e^{-i\sum a_{jk} x_j x_k} g_{\tau}^{\varphi} \in O(\tau^{N-1/2})$.

(b) If $O_{\varphi}(g) \leq N$ and A is a C^{∞} function with values in Hom(V, V), then $(Ag)_t^{\varphi} - A(0)g_{\tau}^{\varphi} \in O(\tau^{N-1/2})$.

(c) If $O_{\varphi}(g) \leq N$ and $\theta \colon \mathbb{R}^n \to \mathbb{R}^n$ is a diffeomorphism with $\theta(0) = 0$, then $(\theta^*g)_{\tau}^{\theta^*\varphi} - (T_0\theta)^*(g_{\tau}^{\varphi}) \in O(\tau^{N-1/2})$.

DEFINITION. If $O_{\varphi}(g) \leq N$, the class of $\tau^{-N}g_{\tau}^{\varphi}$ modulo $O(\tau^{-1/2})$ is called the *principal symbol* of order N for g at φ .

AMS (MOS) subject classifications (1970). Primary 46F10; Secondary 58G15.

¹ Partially supported by the National Science Foundation.

² See final note added in proof.