MAYER-VIETORIS SEQUENCES FOR COMPLEXES OF DIFFERENTIAL OPERATORS

BY A. ANDREOTTI, C. D. HILL¹, S. ŁOJASIEWICZ AND B. MACKICHAN¹

Communicated by I. M. Singer, January 30, 1976

This is an announcement of some of the results in [1].

1. **Preliminaries.** Let X be a smooth manifold, E^i , i = 0, 1, ..., smooth vector bundles, and $\Omega \subset X$ open. Let $E^i(\Omega) = C^{\infty}(\Omega, E^i)$. We consider complexes of linear differential operators with locally constant orders

$$\mathsf{E}(\Omega): \ \mathsf{E}^{\mathbf{0}}(\Omega) \xrightarrow{\underline{D}^{\mathbf{0}}} \mathsf{E}^{1}(\Omega) \xrightarrow{\underline{D}^{\mathbf{1}}} \cdots .$$

The cohomology of $E(\Omega)$ is $H^i(\Omega) = \ker D^i / \operatorname{im} D^{i-1}$. Let $S \subset \Omega$ be a smooth hypersurface dividing Ω into two parts: $\Omega - S = \mathring{\Omega}^+ \cup \mathring{\Omega}^-$; $\mathring{\Omega}^+ \cap \mathring{\Omega}^- = \emptyset$; and $S \cup \mathring{\Omega}^{\pm} = \Omega^{\pm}$. Let $E^i(\Omega^{\pm})$ be the sections over Ω^{\pm} smooth up to S. We obtain

$$E(\Omega^{\pm}): E^{0}(\Omega^{\pm}) \xrightarrow{D^{0}} E^{1}(\Omega^{\pm}) \xrightarrow{D^{1}} \cdots$$

A section $u \in E^{i}(\Omega)$ has zero Cauchy data on S if $D^{i}\widetilde{u} = \widetilde{f}$ is valid on Ω in the sense of distributions where $\widetilde{u} = u$ on Ω^{+} and = 0 on $\Omega - \Omega^{+}$, and $\widetilde{f} = D^{j}u$ on Ω^{+} and = 0 on $\Omega - \Omega^{+}$; and similarly with Ω^{+} replaced by Ω^{-} . The space of such sections is $I(\Omega, S)$, and $I(\Omega^{\pm}, S) = I(\Omega, S)|_{\Omega^{\pm}}$. We obtain complexes

$$I(\Omega, S): I^0(\Omega, S) \xrightarrow{D^0} I^1(\Omega, S) \xrightarrow{D^1} \cdots,$$

and

$$\mathcal{I}(\Omega^{\pm}, S): \ \mathcal{I}^{0}(\Omega^{\pm}, S) \xrightarrow{\underline{D}^{0}} \mathcal{I}^{1}(\Omega^{\pm}, S) \xrightarrow{\underline{D}^{1}} \cdots$$

with cohomologies $H^{i}(\Omega, \mathcal{I})$ and $H^{i}(\Omega^{\pm}, \mathcal{I})$, respectively.

The tangential complex is the quotient complex $0 \to \mathcal{I}(\Omega, S) \to \mathcal{E}(\Omega)$ $\to \mathcal{C}(S) \to 0$. An element of $\mathcal{C}^{i}(S)$ is Cauchy data for D^{i} , the induced operator is D_{s}^{i} , and the cohomology is $H^{i}(S)$.

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 58G99, 35N10, 35N15; Secondary 35A10.

Key words and phrases. Overdetermined systems, boundary complex, tangential complex, cohomology, homology, duality.

¹Research supported by the National Science Foundation.