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Essentials of Padé approximants, by George A. Baker, Jr., Academic Press, 
New York, 1975, xi+306 pp., $26.00. 

The area of rational approximation and interpolation of functions has 
been studied intensively since the advent of electronic computers. This has 
brought the Padé table to the foreground and the text under review is the 
first pulling together of a lot of information about these tables that has 
appeared in the last 20 years. The texts by Perron and Wall on continued 
fractions, each of which devotes a chapter to the Padé table, have been 
among the chief references so far. A rational function rm,n(z) = pm,n(z)/qm,n(z) 
is of type (m, n) if pm,n(z) is a polynomial of degree ^ m and qm,n{z) a 
polynomial of degree ^ n . rm,n(z) interpolates a given function f(z) at the 
distinct points Zi, • • • , Zk if rm,n(zi)=f(Zi), i = l, • • • , k. If some of the points 
Zi coincide, say zi = Z2=z3, then it is natural to require rm,n(zi)=/(zi), 
rm,n(zi) =/ ' (z i ) , and C,n(zi) = f"{zi) instead of rm,n(zi) = f(zi) for i = 1, 2, 3. 
The case zx = z2 = • • • = zk, i.e. r%n(zi) = /( l )(zi), for i = 0, 1, . . . , k -1 requires 
that rm,n(z) has a high order of contact with f(z) at Zi. There are two 
classical and equivalent definitions of the (m, n) Padé approximant Rm,n to 
f(z) at z = 0: 

1. find the unique rational function Rm,„ in lowest terms such that 
f(z)-Rm,n(z) = 0(zk), k=maximum, and 

2. find polynomials Pm,n and Qm,n such that Qm,n(z)f(z)-Pm,n(z)= 
0(zm + n + 1) , and let Rm,n be Pm,n/Qm,n in lowest terms. 

In definition 1, Rm,n depends on m + n + 1 parameters and one would 


