CONFORMAL MAPS ON HILBERT SPACE

BY MELVYN HUFF

Communicated February 15, 1975

1. Introduction. In [1] Nevanlinna gave a simple proof of the following theorem of Liouville. (Precise definitions appear below.)

Theorem 1. Suppose U is a connected open set in a real Hilbert space H of dimension ≥ 3 (including ∞) and $f \colon U \longrightarrow H$ is C^4 and conformal. Then f is either

- (a) an affine map whose linear part is a constant multiple of a unitary operator,
 - (b) an inversion with respect to a sphere,
 - (c) $f_1 \circ f_2$ where f_1 is of type (a) and f_2 is of type (b).

REMARKS. (i) The dimension of H must be ≥ 3 because every holomorphic map on \mathbb{C} with a nowhere zero derivative is conformal.

- (ii) For \mathbb{R}^n , the theorem is known even for f just C^1 [2].
- (iii) The proof of Nevanlinna depends on f being C^4 .

In this paper we outline how a technique in [3], when recognized as applying to conformal mappings and suitably modified, can be used to prove the theorem with f only C^3 .

2. Notation and definitions. H will be a real infinite dimensional Hilbert space and U a connected open subset. A map is C^n if it is n times continuously Fréchet differentiable as in [4]. A C^1 function $f: U \to H$ is called conformal if Df_x is a linear isomorphism and there is a function $c: U \to \mathbb{R}$ such that

$$\langle Df_x(h_1), Df_x(h_2)\rangle = c(x) \, \langle h_1 \,, \, h_2 \rangle$$

for all x in U and all h_1 , h_2 in H. (This definition is merely a reformulation of the more geometric definition that says f preserves the angle between two curves meeting at a point.) Banach and Hilbert manifolds are defined as in [4].

By an inversion with respect to the sphere $\{x \in H: ||x-p|| = r\}$ I mean the map $x \longrightarrow x'$ where

- (i) $||x p|| ||x' p|| = r^2$ and
- (ii) x and x' lie on the same ray originating at p. The analytic form of such an inversion is

$$x \longrightarrow r^2(x-p)||x-p||^{-2} + p.$$

AMS (MOS) subject classifications (1970). Primary 58B10, 58B20, 46C10.