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Let G be a compact connected semisimple Lie group. Fix a maximal torus 
T and denote its Lie algebra by Ï. The irreducible unitary representations of G 
are indexed by a semilattice L of dominant integral forms on £. For each X in 
L let X\ and dx be the character and degree of the representation corresponding 
toX. 

By the Fourier series of a function ƒ on G we mean the formal series 
2\eL^\X\ * f- •"n tiris PaPer w e announce results concerning the convergence 
properties (both mean and pointwise) of polyhedral partial sums of these Fourier 
series. Details and proofs will appear elsewhere. 

Let P be an open, convex polyhedron in X centered at the origin. Assume 
P is Weyl group invariant. LetRP = {RX\XGP} andSRf(g) = 2K(ERPdxX\ */&)• 

THEOREM A. If p =£ 2 there is an f in LP(G) such that SRfdoes not con
verge to f in the Lp norm. 

An immediate corollary of this theorem is that when p < 2 almost every
where convergence fails for some ƒ in LP(G). However, the convergence behaviour 
of Fourier series of functions having invariance properties, in particular class func
tions, is markedly different. 

A class function is a function ƒ such that f(gxg~~ * ) = f(x) for all g in G and 
almost all x in G. Let LPj{G) denote the p-integrable class functions. For ƒ in 
Lpj(G)9 

dxXx *f(g) = {ff(x)xjx)dx)xx(g). 

Let n = dim G and / = rank G = dim T. 
We now assume that G is a simple, simply connected compact He group. 

THEOREM B. If p > 2n/(n + 0 and f is in L$(G) then SRf(g) converges to 
f{g) for almost all g 

THEOREM C. If p < 2n/(n + î)orp> 2n/(n - t) there is an fin L$(G) 
such that SRfdoes not converge to f in the IP norm. 
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