CONVERGENCE OF FOURIER SERIES ON COMPACT LIE GROUPS ${ }^{1}$

BY ROBERT J. STANTON AND PETER A. TOMAS
Communicated by James Bramble, September 15, 1975

Let G be a compact connected semisimple Lie group. Fix a maximal torus T and denote its Lie algebra by \mathfrak{I}. The irreducible unitary representations of G are indexed by a semilattice L of dominant integral forms on \mathcal{I}. For each λ in L let χ_{λ} and d_{λ} be the character and degree of the representation corresponding to λ.

By the Fourier series of a function f on G we mean the formal series $\Sigma_{\lambda \in L} d_{\lambda} \chi_{\lambda} * f$. In this paper we announce results concerning the convergence properties (both mean and pointwise) of polyhedral partial sums of these Fourier series. Details and proofs will appear elsewhere.

Let P be an open, convex polyhedron in \mathfrak{I} centered at the origin. Assume P is Weyl group invariant. Let $R P=\{R X \mid X \in P\}$ and $S_{R} f(g)=\Sigma_{\lambda \in R} d_{\lambda} \chi_{\lambda} * f(g)$.

Theorem A. If $p \neq 2$ there is an f in $L^{p}(G)$ such that $S_{R} f$ does not converge to f in the L^{p} norm.

An immediate corollary of this theorem is that when $p<2$ almost everywhere convergence fails for some f in $L^{p}(G)$. However, the convergence behaviour of Fourier series of functions having invariance properties, in particular class functions, is markedly different.

A class function is a function f such that $f\left(g x g^{-1}\right)=f(x)$ for all g in G and almost all x in G. Let $L_{I}^{p}(G)$ denote the p-integrable class functions. For f in $L_{I}^{p}(G)$,

$$
d_{\lambda} \chi_{\lambda} * f(g)=\left(\int f(x) \overline{\chi_{\lambda}(x)} d x\right) \chi_{\lambda}(g)
$$

Let $n=\operatorname{dim} G$ and $l=\operatorname{rank} G=\operatorname{dim} T$.
We now assume that G is a simple, simply connected compact Lie group.
Theorem B. If $p>2 n /(n+l)$ and f is in $L_{I}^{p}(G)$ then $S_{R} f(g)$ converges to $f(g)$ for almost all g.

Theorem C. If $p<2 n /(n+l)$ or $p>2 n /(n-l)$ there is an f in $L_{I}^{p}(G)$ such that $S_{R} f$ does not converge to f in the L^{p} norm.

