CONVERGENCE OF FOURIER SERIES ON COMPACT LIE GROUPS¹

BY ROBERT J. STANTON AND PETER A. TOMAS

Communicated by James Bramble, September 15, 1975

Let G be a compact connected semisimple Lie group. Fix a maximal torus T and denote its Lie algebra by \mathfrak{I} . The irreducible unitary representations of G are indexed by a semilattice \mathfrak{L} of dominant integral forms on \mathfrak{I} . For each λ in \mathfrak{L} let χ_{λ} and d_{λ} be the character and degree of the representation corresponding to λ .

By the Fourier series of a function f on G we mean the formal series $\sum_{\lambda \in L} d_{\lambda} \chi_{\lambda} * f$. In this paper we announce results concerning the convergence properties (both mean and pointwise) of polyhedral partial sums of these Fourier series. Details and proofs will appear elsewhere.

Let P be an open, convex polyhedron in \mathfrak{I} centered at the origin. Assume P is Weyl group invariant. Let $RP = \{RX|X \in P\}$ and $S_R f(g) = \sum_{\lambda \in RP} d_\lambda \chi_\lambda * f(g)$.

THEOREM A. If $p \neq 2$ there is an f in $L^p(G)$ such that $S_R f$ does not converge to f in the L^p norm.

An immediate corollary of this theorem is that when p < 2 almost everywhere convergence fails for some f in $L^{p}(G)$. However, the convergence behaviour of Fourier series of functions having invariance properties, in particular class functions, is markedly different.

A class function is a function f such that $f(gxg^{-1}) = f(x)$ for all g in G and almost all x in G. Let $L_I^p(G)$ denote the *p*-integrable class functions. For f in $L_I^p(G)$,

 $d_{\lambda}\chi_{\lambda} * f(g) = \left(\int f(x)\overline{\chi_{\lambda}(x)} \, dx\right)\chi_{\lambda}(g).$

Let $n = \dim G$ and $l = \operatorname{rank} G = \dim T$.

We now assume that G is a simple, simply connected compact Lie group.

THEOREM B. If p > 2n/(n + l) and f is in $L_I^p(G)$ then $S_R f(g)$ converges to f(g) for almost all g.

THEOREM C. If p < 2n/(n+l) or p > 2n/(n-l) there is an f in $L_I^p(G)$ such that $S_R f$ does not converge to f in the L^p norm.

AMS (MOS) subject classifications (1970). Primary 43A75, 42A18.

¹This research was supported in part by NSF Grant MPS75-05577.

Copyright © 1976, American Mathematical Society