QUADRATIC FORMS AND SIMILARITIES

BY DANIEL B. SHAPIRO

Communicated by Hyman Bass, May 5, 1975

1. Introduction. The results announced here are concerned with the Hurwitz problem of composition of quadratic forms, over a field F characteristic not two. The possible dimensions of forms admitting composition are stated. However, determining which quadratic forms do admit composition is a more delicate question, and answers are known only for small dimensions. The proofs will appear elsewhere.

It is a pleasure to acknowledge the interest and encouragement of T.-Y. Lam, A. Wadsworth, and A. Geramita in this research.

2. The Hurwitz problem. We follow the notation of Lam's book [L]. Throughout this paper, F will denote a field, with char $F \neq 2$. All forms considered will be nonsingular.

DEFINITION. If (V, q) is a quadratic space over F, a map $f \in End(V)$ is a similarity if

$$q(f(v)) = \sigma(f) \cdot q(v), \text{ for all } v \in V,$$

where $\sigma(f) \in F$. Let Sim(V, q) = Sim(q) denote the set of all similarities on (V, q).

We are interested in the additive structure if Sim(V, q). If S is an Flinear subspace of End(V), and $S \subseteq Sim(V, q)$, then the map σ : $Sim(V, q) \rightarrow F$ becomes a quadratic form when restricted to S. We consider only those subspaces S on which this form is nonsingular.

Notation. For quadratic forms σ , q, we write $\sigma < Sim(q)$ if σ is isometric to some subspace of Sim(q), using the induced quadratic form.

Using the definition of composition of quadratic forms in [L, p. 133], we see that q admits composition with σ if and only if $\sigma < Sim(q)$. The study of such composition began with the four and eight square problem, and was completed by Hurwitz in the case when F is algebraically closed [H].

Notation. Following [L], [K2], for $a_i \in F$, we write $\langle a_1, \ldots, a_n \rangle$ for an *n*-dimensional diagonal form; and $\langle \langle a_1, \ldots, a_n \rangle$ for the *n*-fold Pfister form $\bigotimes_{i=1}^n \langle 1, a_i \rangle$. For quadratic forms φ, q , we write $\varphi \simeq q$ if they are isometric,

AMS (MOS) subject classifications (1970). Primary 15A63, 15A66.

Key words and phrases. Quadratic form, Hurwitz problem, similarity, Pfister form, orthogonal design.