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Let G be a connected algebraic group with a given representation on a vec­
tor space K. Let W be a sub space of V. I propose to study the union of all the 
translates of W by G, G • W. 

Let P be a subgroup of G that stabilizes W. Let X —• G/P be the homoge­
neous vector bundle over G/P, associated to the representation of P on W. Expli­
citly 

X = {(g, w) G G x W modulo (g, w) ~ (gp~l, pw) for p G P}. 

The representation G x V —• V induces a morphism ƒ: X —• V. The image of ƒ 
is G • R/. 

THEOREM. Assume G/P is complete. Then G • W is a closed subvariety of 

V. Furthermore, if the characteristic of the ground field is zero, and if the actions 

of G on V and of P on W are completely reducible, then G - W is a normal Cohen-

Macaulay variety, and if f is birational, then G - W has rational singularities. 

The proof of this theorem uses the Borel-Weil-Bott theorem on the cohomo-
logy of homogeneous vector bundles [1] together with some facts surrounding the 
theory of rational resolutions [5]. 

The application that I have in mind for this theorem is the study of the sin­
gularities of the varieties of complexes introduced by Buchsbaum and Eisenbud 

PL 
I will first state what these varieties are. Let K°, . . . , Kn be a sequence 

of vector spaces. Let F be the direct sum of~Hom(A:0, À: 1 ) , . . . , Yiom(Kn~l, Kn). 

A point a in V is denoted (a1, . . . , an), where at G Hom^ 1 " 1 , Kl). A point a 

in V represents a complex if ai+ x ° at: = 0 for 0 < i < n. The rank of a is the se­
quence of integers, (rank ax, . . . , rank an), where rank b is the dimension of the 
image of the homomorphism b. If (m1, . . . , mn) is the rank of a complex, then 
mx < d imK° ,m n < dimKn, and mi + mi+ x < dimKl for 0 < / < n. Converse­
ly, any such sequence is the rank of a complex. Let M be the set of such se­
quences. 

If m G M, define the variety of Buchsbaum and Eisenbud, B-E(m), to be the 
variety of complexes a, such that rank at < mt for 1 < i < n. 
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