$\sum_{n=1}^{N} (j_n(N) - j_n)^2$ goes to zero as N approaches infinity, where $\{j_n\}$ is the solution to equation (2).

These last two theorems are applied in considering the potential problem involving the temperature in a sphere having prescribed temperature in the top half and Newtonian heat loss through the lower half. (In fact, a survey of some seventy papers involving dual orthogonal series shows that these last two theorems are sufficiently general to apply to all of them.)

REFERENCES

1. R. P. Feinerman and R. B. Kelman, The convergence of least square approximations for dual orthogonal series, Glasgow Math. J. 15 (1974), 82-85.

2. R. B. Kelman and R. P. Feinerman, Dual orthogonal series, SIAM J. Math. Anal. 5 (1974), 489-502.

3. I. N. Sneddon, Mixed boundary value problems in potential theory, North-Holland, Amsterdam; Interscience, New York, 1966. MR 35 #6853.

DEPARTMENT OF MATHEMATICS, LEHMAN COLLEGE, CITY UNIVERSITY OF NEW YORK, BRONX, NEW YORK 10468

DEPARTMENT OF COMPUTER SCIENCE, COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80523

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 4, July 1975

CONFORMAL GEOMETRY IN HIGHER DIMENSIONS. I

BY R. S. KULKARNI

Communicated¹ February 24, 1975

Conformally Euclidean manifolds are one type of higher dimensional generalization of Riemann surfaces. They are studied and classified here from that point of view (cf. [2] and [3]).

1. DEFINITION 1.1. A conformal structure on a manifold M is a covering $\{U_{\alpha}\}$ together with a metric g_{α} on U_{α} such that whenever $U_{\alpha} \cap U_{\beta} \neq \emptyset$, g_{α} and g_{β} are conformally related on $U_{\alpha} \cap U_{\beta}$.

736

AMS (MOS) subject classifications (1970). Primary 53A30. ¹Originally received July 24, 1974.