BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 3, May 1975

ON THE NORM FORM OF A FINITE GALOIS EXTENSION OVER Q

BY JIH-MIN SHYR¹

Communicated by Robert Fossum, February 13, 1975

1. Introduction. Let $\lambda: T \longrightarrow T'$ be a Q-isogeny of algebraic tori defined over Q, the rational number field. Then the isogeny λ induces naturally the following maps (cf. [2]):

$$\lambda_{v} \colon T_{v} \to T'_{v}, \quad \lambda_{v}^{c} \colon T_{v}^{c} \to T'_{v}^{c}, \quad \lambda_{Q}^{\infty} \colon T_{Q}^{\infty} \to T'_{Q}^{\infty}, \quad (\hat{\lambda})_{Q} \colon (\hat{T}')_{Q} \to (\hat{T})_{Q}.$$

For a homomorphism $\alpha: G \to G'$ of commutative groups with finite kernel and cokernel, we define the q-symbol of α by $q(\alpha) = [\operatorname{Cok} \alpha]/[\operatorname{Ker} \alpha]$. Then the q-symbols of the above maps are defined, and $q(\lambda_v^c) = 1$ for almost all finite prime v; more precisely, if K is a finite splitting field for T and T' over Q, then $q(\lambda_v^c) = 1$ whenever v is prime to the degree of λ and is unramified relative to K/Q. In [2], we prove

THEOREM 1. The relative class number $h_T/h_{T'}$ of T, T' over Q can be expressed as

$$\frac{h_T}{h_{T'}} = \frac{\tau_T}{\tau_{T'}} \cdot \frac{q(\lambda_{\infty})}{q(\lambda_{\infty}^{\infty})q((\hat{\lambda})_Q)} \cdot \prod_{\nu \neq \infty} q(\lambda_{\nu}^c),$$

where τ_T (resp. $\tau_{T'}$) is the Tamagawa number of T (resp. T') over Q.

In this paper, we apply Theorem 1 to the study of the norm form of a finite Galois extension over Q.

2. Main theorem. Let K/Q be a Galois extension of finite degree *n*. Denote by *N* the norm map $R_{K/Q}(G_m) \rightarrow G_m$, where G_m is the multiplicative group of the universal domain Ω , and $R_{K/Q}$ is the Weil functor of restricting the field of definition from K to Q (cf. [3]). We have an exact sequence

AMS (MOS) subject classifications (1970). Primary 10C10, 20G30.

¹This paper is based on a part of the author's Ph.D. thesis, written at Johns Hopkins University under the direction of Professor T. Ono. For the unexplained notions, see [2].

Copyright © 1975, American Mathematical Society