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Suppose Sx and 2?2
 a r e Banach spaces, {PT} and {QT} are families of 

projection operators on ^B± and 2?2 respectively which converge strongly 
as r-*oo to the respective identity operators, and A is a bounded linear 
transformation from 23i to 232. One says that the projection method 
(PT9 QT) is applicable to A if, roughly speaking, {QTAP^yx converges 
strongly to A~x as r-*oo. More precisely what is required is that QTAPT9 

as an operator from P^&x to ôr232, be invertible for sufficiently large r 
and that {QTAPT)"1QT converge strongly as T-*OO. (Then A is necessarily 
invertible and the strong limit is A"1.) 

To give an example, the prototype of those considered in this book, 
let a be a bounded function defined on the unit circle having Fourier 
coefficients ak (&=0, ± 1 , • • •), and consider the operator A on /2 of the 
positive integers defined by 

{ 00 Ï 0 0 

This is the (semi-infinite) Toeplitz operator associated with a. The pro­
jections are the simplest ones: Pn=Qn=projection on the subspace of 
sequences {£,} satisfying f,=0 for y >«. The operator PnAPn may then be 
represented by the finite Toeplitz matrix 

and the question is whether these matrices are invertible from some n 
onward and, if so, whether the inverses of these matrices converge strongly 


