MATRIX DIFFERENTIAL EQUATIONS

BY RAY REDHEFFER

Communicated by Alberto Calderón, December 2,1974
Let Ω be the set of n by n matrices with complex elements, let R denote the set of reals, and let R_{0} denote the interval $\left[0, t_{0}\right)$ for some $t_{0}>0$. We consider the differential relation

$$
\begin{equation*}
0 \in z^{\prime}-f(t, z), \quad t \in R_{0} \tag{1}
\end{equation*}
$$

where $z(t) \in \Omega$ and f is a function from $R_{0} \times \Omega$ to subsets of Ω. The equation can be interpreted in two senses: Either z is absolutely continuous and the relation holds almost everywhere, or z is continuous and the relation holds except in a countable set.

A function $\phi(t, \rho)$ from $R_{0} \times R$ to R is a uniqueness function if the upper solution of the equation

$$
\begin{equation*}
D^{+} \rho=\phi(t, \rho), \quad t \in R_{0} ; \quad \rho(0)=0 \tag{2}
\end{equation*}
$$

is $\rho=0$. Here D^{+}denotes the upper right Dini derivate, though other derivates could be used just as well. The equation (2) is interpreted in the same sense as (1).

We use $|\xi|$ for the Euclidean length of the complex vector ξ, so that $|\xi|^{2}=\xi^{*} \xi$. For $z \in \Omega$ a norm and Kamke norm are defined respectively by

$$
\|z\|=\sup |z \xi|, \quad[z]=\sup \operatorname{Re}\left(\xi^{*} z \xi\right), \quad(|\xi|=1)
$$

We say that f satisfies a uniqueness condition if there exist an $\epsilon>0$ and a uniqueness function ϕ such that

$$
x \in f(t, u), \quad y \in f(t, v), \quad\|u-v\|<\epsilon
$$

together imply

$$
\left[(u-v)^{*}(x-y)\right] \leqslant\|u-v\| \phi(t,\|u-v\|) .
$$

The hypotheses and conclusions of our theorems hold for $t \in R_{0}$ and, for simplicity, all coefficients in the examples are integrable.

