MATRIX DIFFERENTIAL EQUATIONS

BY RAY REDHEFFER

Communicated by Alberto Calderón, December 2,1974

Let Ω be the set of *n* by *n* matrices with complex elements, let *R* denote the set of reals, and let R_0 denote the interval $[0, t_0)$ for some $t_0 > 0$. We consider the differential relation

$$(1) 0 \in z' - f(t, z), t \in R_0$$

where $z(t) \in \Omega$ and f is a function from $R_0 \times \Omega$ to subsets of Ω . The equation can be interpreted in two senses: Either z is absolutely continuous and the relation holds almost everywhere, or z is continuous and the relation holds except in a countable set.

A function $\phi(t, \rho)$ from $R_0 \times R$ to R is a uniqueness function if the upper solution of the equation

(2)
$$D^+ \rho = \phi(t, \rho), \quad t \in R_0; \quad \rho(0) = 0$$

is $\rho = 0$. Here D^+ denotes the upper right Dini derivate, though other derivates could be used just as well. The equation (2) is interpreted in the same sense as (1).

We use $|\xi|$ for the Euclidean length of the complex vector ξ , so that $|\xi|^2 = \xi^* \xi$. For $z \in \Omega$ a norm and Kamke norm are defined respectively by

 $||z|| = \sup |z\xi|, \quad [z] = \sup \operatorname{Re}(\xi^* z\xi), \quad (|\xi| = 1).$

We say that f satisfies a uniqueness condition if there exist an $\epsilon > 0$ and a uniqueness function ϕ such that

 $x \in f(t, u), \quad y \in f(t, v), \quad ||u - v|| < \epsilon$

together imply

$$[(u-v)^*(x-y)] \le ||u-v||\phi(t, ||u-v||).$$

The hypotheses and conclusions of our theorems hold for $t \in R_0$ and, for simplicity, all coefficients in the examples are integrable.

AMS (MOS) subject classifications (1970). Primary 34A15, 34G05.

Copyright © 1975, American Mathematical Society