AN ENTROPY EQUIDISTRIBUTION PROPERTY FOR A MEASURABLE PARTITION UNDER THE ACTION OF AN AMENABLE GROUP

BY J. C. KIEFFER

Communicated by Harry Kesten, October 10, 1974

Throughout this note let G be an arbitrary discrete amenable group. Let (Ω, M, λ) be a probability space. Let A be the automorphism group of (Ω, M, λ) . Let $T: G \rightarrow A$ be a group homomorphism. We call T an action of G on Ω . For each $g \in G$, let T^g be the image of g in A under T. Then T^g is a measurable, measure-preserving, invertible map from Ω to itself.

If Q is a partition of Ω and $\omega \in \Omega$, let $Q(\omega)$ be the element of Q which contains ω . If E is a set let |E| denote the cardinality of E.

Let K be a subgroup of G. A net $\{A_{\alpha}\}$ of finite nonempty subsets of K is said to satisfy property P with respect to K if $\lim_{\alpha} |A_{\alpha}|^{-1} |gA_{\alpha} \cap A_{\alpha}| = 1, g \in K$. (Since K is amenable, such a net $\{A_{\alpha}\}$ exists; see [3].)

Let P be a measurable partition of Ω with finite entropy. If E is a finite nonempty subset of G, let $h_P(E) \in L^1(\Omega)$ be defined as follows:

$$h_p(E)(\omega) = -\log \lambda \left[\left\{ \bigvee_{g \in E} (T^g)^{-1} P \right\} (\omega) \right], \quad \omega \in \Omega.$$

The following generalization of the Shannon-McMillan theorem may be found in [4] and [8]: Let $G = Z^k$, where Z is the group of integers and k is a positive integer. For $n = 1, 2, \dots$, let $A_n = \{(x_1, x_2, \dots, x_k) \in Z^k: 0 \le x_i \le n, i = 1, 2, \dots, k\}$. Then $\{|A_n|^{-1}h_p(A_n)\}$ converges in $L^1(\Omega)$ as $n \to \infty$.

In [7] it is shown that if G is the group of dyadic rationals modulo one, and if A_n is the cyclic subgroup of G generated by 2^{-n} , then $\{|A_n|^{-1}h_P(A_n)\}$ converges in $L^1(\Omega)$ as $n \to \infty$. The authors of [7] conjectured that this property generalizes to a general countable abelian group.

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 60F99, 28A65; Secondary 43A07.

Key words and phrases. Amenable group, Shannon-McMillan theorem, group action, entropy, measurable partition, probability space.