A COMPLETE LOCAL FACTORIAL RING OF DIMENSION 4 WHICH IS NOT COHEN-MACAULAY

BY ROBERT M. FOSSUM AND PHILLIP A. GRIFFITH ${ }^{1}$
Communicated by Hyman Bass, July 15, 1974

Samuel [7] stated that he knew of no factorial noetherian ring which was not Cohen-Macaulay. Murthy [6] showed that a geometric factorial ring which is Cohen-Macaulay is Gorenstein. Subsequently, Bertin [1] constructed an example of a factorial ring which was not Cohen-Macaulay. Hochster and Roberts [5] noticed that such examples abound and were found by Serre [9]. On the other hand, Raynaud, Boutot, and Hartshorne and Ogus [3] have shown that a complete local ring which is factorial, of dimension at most 4 , and with C as residue class field is Cohen-Macaulay.

This note is to announce that the completion of Bertin's example (which is characteristic 2) is factorial. This defeats a conjecture suggested by Example 5.9 of Hochster [4] which states: If A is a complete noetherian domain, then some symbolic power of a prime ideal of height one is a maximal CohenMacaulay module.

Let k be a perfect field of characteristic p with $p \neq 0$. Let N operate on k^{4} by $N\left(e_{i}\right)=e_{i+1}$ for $1 \leqslant i<4$ and with $N\left(e_{4}\right)=0$. Then $I+N$ is an automorphism of k^{4} of order p if $p \geqslant 5$ and of order 4 if $p=2$. Let $B=k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$, which we consider to be the symmetric algebra on k^{4}. Let G denote the group of automorphisms of B induced by $I+N$. It follows from Samuel [8] that the ring of invariants $A=B^{G}$ is factorial. If $p=2$, then Bertin [1] has shown that A is not CohenMacaulay. Using a result in Serre [9], Hochster and Roberts [5] show that A is not Cohen-Macaulay if $p \geqslant 5$. Let $S=B_{m}$ and let $R=S^{G}$, where $m=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. It follows that $R=A_{n}$ with $n=m \cap A$. The different $D(S / R)=S$, and therefore the cohomology group $H^{1}\left(G, \mathbf{G}_{m}(S)\right)$ $=0$. Let \hat{S} denote the m-adic completion of B. The first result is almost obvious.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 13F15, 13H10.
 ${ }^{1}$ This research was partially supported by the NSF.

