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We consider a linear operator T mapping an Lp space into itself. T 
will be assumed to be positive (f>0=*Tf>0) and a contraction 
(liril < 1). A matrix (ani), n, i = 1, 2, •••, is called uniformly regular if 

(1) sup X \ani\ < °°, lim sup \ani\ = 0, lim Z ani = 1. 
n f n i n i 

THEOREM 1. If 1 < p < °° and if T is a positive contraction on Lp, 
then the following conditions are equivalent 

(A) ]xmnT
n exists in the weak operator topology, 

(B) limn 2j ani T' exists in the strong operator topology for every 
uniformly regular matrix (ani). 

The theorem is already known for p = 1 and for p = 2, even for not 
necessarily positive contractions ([2], [5]). 

SKETCH OF PROOF . (i) The implication (B) => (A) is easy and holds 
in more general situations (cf. [5]). Hence we only prove (A) => (B). 

(ii) If G is the largest set such that G supports a ^invariant function 
g, then fGLp(G) implies that TfeLp(G). Tg = g implies T V " 1 = 
g?"1, hence ƒ G Z p / ( p _ 0 (G) implies T* f e Lp/(p_t)(G). Therefore 
there is no communication between G and F = Gc, and the restrictions 
of T to L (G) and Lp(F) may be considered separately. On G there 
exists a strictly positive T-invariant function, and therefore the theorem for 
Lp(G) follows from the results proved in [5, §2]. There exist no nontrivial 
positive ^-invariant functions on F, and hence the weak limit of Tn 

restricted to L (F) must be zero. 
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