A FIXED POINT THEOREM FOR MULTIVALUED NONEXPANSIVE MAPPINGS IN A UNIFORMLY CONVEX BANACH SPACE

BY TECK-CHEONG LIM ${ }^{1}$
Communicated by Alberto Calderón, February 19, 1974

Let C be a nonempty weakly compact convex subset of a Banach space X, and $\mathscr{C}(C)$ be the family of nonempty compact subsets of C equipped with the Hausdorff metric. Let $T: C \rightarrow \mathscr{C}(C)$ be a nonexpansive mapping, i.e. for each $x, y \in C$,

$$
H(T(x), T(y)) \leqq\|x-y\|
$$

where $H(A, B)$ denotes the Hausdorff distance between A and B. A point $x \in C$ is called a fixed point of T if $x \in T x$. Fixed point theorems for such mappings T have been established by Markin [11] for Hilbert spaces, by Browder [2] for spaces having weakly continuous duality mapping, and by Lami Dozo [7] for spaces satisfying Opial's condition. Lami Dozo's result is also generalized by Assad and Kirk [1]. By making use of Edelstein's asymptotic center [4], [5], we are able to prove Theorem 1. Let C be a closed convex subset of a uniformly convex Banach space and let $\left\{u_{i}\right\}$ be a bounded sequence in C. The asymptotic center x of $\left\{u_{i}\right\}$ in (or with respect to) C is the unique point in C such that

$$
\lim _{i} \sup \left\|x-u_{i}\right\|=\inf \left\{\lim _{i} \sup \left\|y-u_{i}\right\|: y \in C\right\}
$$

The number $r=\inf \left\{\lim \sup _{i}\left\|y-u_{i}\right\|: y \in C\right\}$ is called the asymptotic radius of $\left\{u_{i}\right\}$ in C. Existence of the unique asymptotic center is proved by Edelstein in [5]. Results on ordinal numbers used here may be found in [13].

Theorem 1. Let X be a uniformly convex Banach space and C be a closed convex bounded nonempty subset of X. Let $T: C \rightarrow \mathscr{C}(C)$ be a nonexpansive mapping from C into the family of nonempty compact subsets of

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 46A05.
 Key words and phrases. Fixed point, multivalued nonexpansive mapping, uniformly convex Banach space, asymptotic center.
 ${ }^{1}$ This research was conducted while the author held an Izzak Walton Killam Memorial Scholarship under the supervision of Professor Michael Edelstein.

