SOME EXAMPLES OF SPHERE BUNDLES OVER SPHERES WHICH ARE LOOP SPACES mod p

BY JOHN EWING

Communicated by Morton Curtis, March 26, 1974

Abstract

In this note we give sufficient conditions that certain sphere bundles over spheres, denoted $B_{n}(p)$, are of the homotopy type of loop spaces $\bmod p$ for p an odd prime. The method is to construct a classifying space for the p-profinite completion of $B_{n}(p)$ by collapsing an Eilenberg-Mac Lane space by the action of a certain finite group.

We say that a space X has some property $\bmod p$ if the localization of X at p has the property. The problem of determining which spheres are of the homotopy type of loop spaces mod p has been completely solved by Sullivan [9]. It is therefore natural to ask which sphere bundles over spheres are of the homotopy type of loop spaces $\bmod p$. In this regard, results of Curtis [2] and Stasheff [7] concerning the question of which sphere bundles over spheres are H-spaces $\bmod p$ give some negative information. Moreover, in a recent paper [3] we investigated a certain class of sphere bundles over spheres and gave necessary conditions for them to be of the homotopy type of a loop space $\bmod p$ for p an odd prime. In this note we prove that certain of these bundles satisfying the conditions of [3] are of the homotopy type of a loop space $\bmod p$ and answer a question posed in [8].

For p an odd prime and n a positive integer, the space $B_{n}(p)$ is an $S^{2 n+1}$-bundle over $S^{2 n+1+2(p-1)}$ classified by the generator of the p-primary part of $\pi_{2 n+2(p-1)}\left(S^{2 n+1}\right)$. From [5] we have that $H^{*}\left(B_{n}(p) ; Z \mid p\right)$ is an exterior algebra on generators x and y, where $\operatorname{deg} x=2 n+1, \operatorname{deg} y=2 n+$ $2 p-1$ and $\mathscr{P}^{1} x=y$. Although few of the $B_{n}(p)$ are of the homotopy type of a loop space $\bmod p$ (see [3]), we have the following exceptions.

Theorem 1. The space $B_{n}(p)$ is of the homotopy type of a loop space $\bmod p$ if n and p satisfy any of the following conditions:
(i) $n=1 ; p=$ any odd prime,
(ii) $n=p-2 ; p=$ any odd prime,
(iii) $n=7 ; p=17$,
(iv) $n=5 ; p=19$,
(v) $n=19 ; p=41$.

