A REMARK CONCERNING PERFECT SPLINES

BY CARL DE BOOR ${ }^{1}$

Communicated by R. C. Buck, January 3, 1974
Let $\boldsymbol{x}:=\left(x_{i}\right)$ be nondecreasing. For a sufficiently smooth f, denote by $\left.f\right|_{x}:=\left(f_{i}\right)$ the corresponding sequence given by the rule

$$
f_{i}:=f^{(j)}\left(x_{i}\right) \quad \text { with } j=j(i):=\max \left\{m \mid x_{i-m}=x_{i}\right\} .
$$

Assuming that \boldsymbol{x} is in $[a, b]$ and that $x_{i}<x_{i+n}$, all $i,\left.f\right|_{x}$ is defined for every f in the Sobolev space

$$
W_{\infty}^{(n)}[a, b]:=\left\{f \in C^{(n-1)}[a, b] \mid f^{(n-1)} \text { abs. cont. } ; f^{(n)} \in L_{\infty}[a, b]\right\} .
$$

Karlin [6] discusses the problem of minimizing $\left\|f^{(n)}\right\|_{\infty}$ over all f in $\Pi(x, \alpha):=\left\{f \in W_{\infty}^{(n)}|f|_{\boldsymbol{x}}=\alpha\right\}$ for a given sequence α, and announces the following
Theorem (S. Karlin [6]). Let $\boldsymbol{x}=\left(x_{i}\right)_{1}^{n+r}$ be a given nondecreasing sequence in the finite interval $[a, b]$, with $x_{i}<x_{i+n}$, all i. Let $\alpha \in R^{n+r}$ be given. Then $\Pi(x, \alpha)$ contains a perfect spline of order n with less than r (interior) knots, i.e., a function of the form

$$
\begin{equation*}
p(x)=\sum_{i=0}^{n=1} a_{i} x^{i}+c\left[x^{n}+2 \sum_{i=1}^{k-1}(-)^{i}\left(x-\xi_{i}\right)_{+}^{n}\right] \tag{1}
\end{equation*}
$$

for some real constants a_{0}, \cdots, a_{n-1}, and c, and for $a<\xi_{1}<\cdots<\xi_{k-1}<b$ with $k \leqq r$. Further, $\left\|f^{(n)}\right\|_{\infty}$ takes on its minimum value over $f \in \Pi(\boldsymbol{x}, \boldsymbol{\alpha})$ at this p.

It is the purpose of this note to outline a simple proof of this theorem.
For this, denote by $\left[x_{i}, \cdots, x_{i+n}\right] f$ the nth divided difference of f at the $n+1$ points x_{i}, \cdots, x_{i+n}. Then $\left[x_{i}, \cdots, x_{i+n}\right](f-g)=0$ for all f, $g \in \Pi(x, \alpha)$ and $i=1, \cdots, r$. Further, it is well known (see e.g., [2]) that, for $f \in W_{1}^{(n)}[a, b]$,

$$
\left[x_{i}, \cdots, x_{i+n}\right] f=\int_{a}^{b} \varphi_{i}(t) f^{(n)}(t) d t
$$

with

$$
\varphi_{i}(t):=M_{i, n}(t) / n!:=\left[x_{i}, \cdots, x_{i+n}\right](\cdot-t)_{+}^{n-1} /(n-1)!
$$

a (polynomial) B-spline of order n having the knots x_{i}, \cdots, x_{i+n}. Hence,

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 41A15; Secondary 46B10.
 ${ }^{1}$ Supported by the United States Army under Contract DA-31-124-ARO-D-462.

