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1. By an automorphic mapping in Rn we mean a continuous, open, 
discrete, and sense-preserving mapping ƒ from a domain D in Rn into 
Rn=Rn u{oo} which satisfies ƒ o g=f for all g G G for some discrete group 
G of «-dimensional Möbius transformations, n^.2. The results presented 
here indicate differences (see §5) as well as similarities (see §4) between 
automorphic functions in C and automorphic mappings of bounded 
dilatation in Rn, ri>2. By mappings of bounded dilatation we mean 
quasimeromorphic (qm) mappings (cf. [MRV 1-2]). 

2. Let G be a discrete Möbius group acting on the unit ball Bn. For 
x0 e Bn which is not fixed by any element of G\{id} the set P={x e Bn: 
d(x9 x0)<d(x, g(x0)), V g e C/\{id}} is a normal fundamental polyhedron; d 
denotes the hyperbolic distance. If the hyperbolic measure V{Bn\G) of 
BnjG is finite, then every normal fundamental polyhedron P has a finite 
number of (w-l)-faces and a finite number of boundary vertices {ƒ*!,•••, 
pk}=FndBn [S]. The last set is void when Bn\G is compact. P is said to 
be simple if for every boundary vertex/? G PC\dBn all the (w—l)-faces of 
P which meet at p are pairwise G-equivalent. By a recent result of Leon 
Greenberg (unpublished) it can be shown [MS] that if V{Bn\G)< oo, then 
every point b e dBn which is fixed by a parabolic element g e G is a 
boundary vertex of some simple fundamental polyhedron. A Möbius 
transformation is called parabolic if it has a unique fixed point in Rn. 

Complete proofs of the following theorems and related results will 
appear in [MS]. 

3. The existence of automorphic meromorphic functions for Möbius 
groups in C is usually proved by methods which cannot be used in Rn, 
n>2. However, with a suitable modification of a construction by J. W. 
Alexander [A] we obtain 

THEOREM 1. Every discrete Möbius group acting on Bn with V(Bn\G) < oo 
has qm automorphic mappings. 
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