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1. Introduction. In this note we present two theorems on exponential 
sums (see Theorems 1 and 2 below). Although seemingly unrelated, both 
results are motivated by the study of a certain type of lower estimates of 
exponential sums in the complex domain. Thus while Theorem 2 is related 
to the validity of this estimate for all discrete exponential sums2, Theorem 
1 essentially says that even a milder estimate of this kind does not hold 
for a whole class of continuous exponential sums (i.e. for certain Fourier 
transforms). 

In addition to the usual notation of the theory of distributions (cf. 
[2], [3], [7]), the following symbols will be used throughout this note. 
Given a distribution <D e ê'=.ë'{Rn), the symbol [O] ({0} resp.) denotes 
the convex hull of the support of O (singular support of O, resp.). For 
A^Rn, hA is the supporting function of A, i.e. hA(X)=sup{eeA (x, A), 
X e Rn. For £ e Cn and r>0, A=A(£; r) is the closed polydisk with center 
£ and radius r; and, if g(£') is any continuous function on A(£; r), we shall 
write 

(1) |g (Q| r =max|g(0 | . 

2. Indicators of smooth convex bodies. 
DEFINITION. Let O e ê' be such that 

(2) {<D * T} = {0} + {T} ( W e ê'). 

Then O will be called a good convolutor. 
The relationship of being a good convolutor to the solvability of the 

convolution equation O * «=ƒ in the appropriate distribution spaces was 
discovered by L. Hörmander [7], and since then it was discussed by several 
authors (for references, cf. [2, Chapter I]). However, it is usually not easy 
to decide whether a given distribution O is a good convolutor or not. 
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