AN INEQUALITY FOR THE DISTRIBUTION OF A SUM OF CERTAIN BANACH SPACE VALUED RANDOM VARIABLES

BY J. KUELBS¹

Communicated by Jacob Feldman, September 29, 1973

1. Introduction. Throughout the paper B is a real separable Banach space with norm $\|\cdot\|$, and all measures on B are assumed to be defined on the Borel subsets of B. We denote the topological dual of B by B^* .

A measure μ on *B* is called a mean zero Gaussian measure if every continuous linear function *f* on *B* has a mean zero Gaussian distribution with variance $\int_{B} [f(x)]^2 \mu(dx)$. The bilinear function *T* defined on *B*^{*} by

$$T(f, g) = \int_B f(x)g(x)\,\mu(dx) \qquad (f, g \in B^*)$$

is called the covariance function of μ . It is well known that a mean zero Gaussian measure on B is uniquely determined by its covariance function.

However, a mean zero Gaussian measure μ on *B* is also determined by a unique subspace H_{μ} of *B* which has a Hilbert space structure. The norm on H_{μ} will be denoted by $\|\cdot\|_{\mu}$ and it is known that the *B* norm $\|\cdot\|$ is weaker than $\|\cdot\|_{\mu}$ on H_{μ} . In fact, $\|\cdot\|$ is a measurable norm on H_{μ} in the sense of [3]. Since $\|\cdot\|$ is weaker than $\|\cdot\|_{\mu}$ it follows that B^* can be linearly embedded into the dual of H_{μ} , call it H_{μ}^* , and identifying H_{μ} with H_{μ}^* in the usual way we have $B^* \subseteq H_{\mu} \subseteq B$. Then by the basic result in [3] the measure μ is the extension of the canonical normal distribution on H_{μ} to *B*. We describe this relationship by saying μ is generated by H_{μ} . For details on these matters as well as additional references see [3] and [4].

2. The basic inequality. The norm $\|\cdot\|$ on B is twice directionally differentiable on $B - \{0\}$ if for $x, y \in B, x+ty \neq 0$, we have

(2.1)
$$(d/dt) ||x + ty|| = D(x + ty)(y)$$

Copyright @ American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 60B05, 60B10, 60F10; Secondary 28A40.

Key words and phrases. Measurable norm, Gaussian measure, law of the iterated logarithm, central limit theorem, differentiable norm.

¹ Supported in part by NSF Grant GP 18759.