# AN INEQUALITY FOR THE DISTRIBUTION OF A SUM OF CERTAIN BANACH SPACE VALUED RANDOM VARIABLES 

BY J. KUELBS ${ }^{1}$<br>Communicated by Jacob Feldman, September 29, 1973

1. Introduction. Throughout the paper $B$ is a real separable Banach space with norm $\|\cdot\|$, and all measures on $B$ are assumed to be defined on the Borel subsets of $B$. We denote the topological dual of $B$ by $B^{*}$.

A measure $\mu$ on $B$ is called a mean zero Gaussian measure if every continuous linear function $f$ on $B$ has a mean zero Gaussian distribution with variance $\int_{B}[f(x)]^{2} \mu(d x)$. The bilinear function $T$ defined on $B^{*}$ by

$$
T(f, g)=\int_{B} f(x) g(x) \mu(d x) \quad\left(f, g \in B^{*}\right)
$$

is called the covariance function of $\mu$. It is well known that a mean zero Gaussian measure on $B$ is uniquely determined by its covariance function.

However, a mean zero Gaussian measure $\mu$ on $B$ is also determined by a unique subspace $H_{\mu}$ of $B$ which has a Hilbert space structure. The norm on $H_{\mu}$ will be denoted by $\|\cdot\|_{\mu}$ and it is known that the $B$ norm $\|\cdot\|$ is weaker than $\|\cdot\|_{\mu}$ on $H_{\mu}$. In fact, $\|\cdot\|$ is a measurable norm on $H_{\mu}$ in the sense of [3]. Since $\|\cdot\|$ is weaker than $\|\cdot\|_{\mu}$ it follows that $B^{*}$ can be linearly embedded into the dual of $H_{\mu}$, call it $H_{\mu}^{*}$, and identifying $H_{\mu}$ with $H_{\mu}^{*}$ in the usual way we have $B^{*} \subseteq H_{\mu} \subseteq B$. Then by the basic result in [3] the measure $\mu$ is the extension of the canonical normal distribution on $H_{\mu}$ to $B$. We describe this relationship by saying $\mu$ is generated by $H_{\mu}$. For details on these matters as well as additional references see [3] and [4].
2. The basic inequality. The norm $\|\cdot\|$ on $B$ is twice directionally differentiable on $B-\{0\}$ if for $x, y \in B, x+t y \neq 0$, we have

$$
\begin{equation*}
(d / d t)\|x+t y\|=D(x+t y)(y) \tag{2.1}
\end{equation*}
$$

[^0]
[^0]:    AMS (MOS) subject classifications (1970). Primary 60B05, 60B10, 60F10; Secondary 28A40.
    Key words and phrases. Measurable norm, Gaussian measure, law of the iterated logarithm, central limit theorem, differentiable norm.
    ${ }^{1}$ Supported in part by NSF Grant GP 18759.

