A BOUNDARY MAXIMUM PRINCIPLE FOR DEGENERATE ELLIPTIC-PARABOLIC INEQUALITIES, FOR CHARACTERISTIC BOUNDARY POINTS

BY SALLY ELLENE MYERS¹

Communicated by James Serrin, September 29, 1973

Let

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{j=1}^{n} b_i(x) \frac{\partial u}{\partial x_i}, \qquad a = (a_{ij}(x)) \ge 0,$$

be defined on an open set $\Omega \subseteq \mathbb{R}^n$. We consider solutions $u=u(x) \in C^2(\Omega) \cap C(\overline{\Omega})$ of $Lu \ge 0$ which attain their maximum value M at P, a characteristic boundary point of Ω .

PROPAGATION SET. (See [3] and [1].) Let the diffusion vector field $\alpha^k(x)$ be the kth column vector of the $n \times n$ matrix $\alpha(x)$, where $\alpha^2 = a$, and let the drift vector field $\beta(x)$ be defined by $\beta_i = b_i - \sum_{j=1}^n (a_{ij})_{x_j}$, $i=1, \dots, n$. Assume that $\alpha^1, \alpha^2, \dots, \alpha^n$, $\beta \in C^1(B)$, where $B \subseteq \mathbb{R}^n$ is open and $\overline{\Omega} \subseteq B$. For $P \in \delta\Omega$, the propagation set $S(P, \Omega)$ is generated by segments of trajectories in Ω of vector fields $\lambda_0\beta + \lambda_1\alpha^1 + \lambda_2\alpha^2 + \dots + \lambda_n\alpha^n, \lambda_0 \ge 0$, where the scalar functions $\lambda_k = \lambda_k(x) \in C^1$, $k = 0, 1, \dots, n$. $\overline{S}(P, \Omega)$ is the closure of $S(P, \Omega)$ in Ω .

CURVATURE CONDITION. Let $P \in \delta\Omega$ be a characteristic boundary point, that is, va(P)v=0, where v is the unit inner normal to $\delta\Omega$ at P. Then $v\alpha^k(P)=0$ for each $k, k=1, \dots, n$. Let \prod^k be the plane of $\alpha^k(P)$ and v through P. In this plane, the cross-section of $\delta\Omega$ and the projection of the trajectory of α^k through P are curves which are perpendicular to vat P. Let the curvatures of these curves at P be τ_k , for the sectional curvature of $\delta\Omega$, and σ_k , for the 'shadow curvature' [4] of the trajectory of α^k . Finally, define the 'excess curvature' ρ_k to be the difference $\tau_k - \sigma_k$.

LEMMA. $\beta v - \sum_{k=1}^{n} \rho_k |\alpha^k|^2 = bv - \sum_{k=1}^{n} \tau_k |\alpha^k|^2$ at P. (The sums are over those k for which $\alpha^k(P) \neq 0$.)

For the following results to hold, the curvature condition $\beta \nu - \sum_{k=1}^{n} \rho_k |\alpha^k|^2 > 0$ must be satisfied at *P*.

AMS (MOS) subject classifications (1970). Primary 35J25, 35J70, 35K20.

Key words and phrases. Elliptic-parabolic operators, maximum principle.

¹ This note summarizes results contained in the author's Ph.D. thesis, which was written under the direction of Professor Raymond Redheffer at the University of California, Los Angeles.