A BOUNDARY MAXIMUM PRINCIPLE FOR DEGENERATE ELLIPTIC-PARABOLIC INEQUALITIES, FOR CHARACTERISTIC BOUNDARY POINTS

BY SALLY ELLENE MYERS ${ }^{1}$

Communicated by James Serrin, September 29, 1973
Let

$$
L u=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}, \quad a=\left(a_{i j}(x)\right) \geqq 0,
$$

be defined on an open set $\Omega \subset R^{n}$. We consider solutions $u=u(x) \in C^{2}(\Omega) \cap$ $C(\bar{\Omega})$ of $L u \geqq 0$ which attain their maximum value M at P, a characteristic boundary point of Ω.

Propagation set. (See [3] and [1].) Let the diffusion vector field $\alpha^{k}(x)$ be the k th column vector of the $n \times n$ matrix $\alpha(x)$, where $\alpha^{2}=a$, and let the drift vector field $\beta(x)$ be defined by $\beta_{i}=b_{i}-\sum_{j=1}^{n}\left(a_{i j}\right)_{x_{j}}$, $i=1, \cdots, n$. Assume that $\alpha^{1}, \alpha^{2}, \cdots, \alpha^{n}, \beta \in C^{1}(B)$, where $B \subseteq R^{n}$ is open and $\Omega \subseteq B$. For $P \in \delta \Omega$, the propagation set $S(P, \Omega)$ is generated by segments of trajectories in Ω of vector fields $\lambda_{0} \beta+\lambda_{1} \alpha^{1}+\lambda_{2} \alpha^{2}+\cdots+$ $\lambda_{n} \alpha^{n}, \lambda_{0} \geqq 0$, where the scalar functions $\lambda_{k}=\lambda_{k}(x) \in C^{1}, k=0,1, \cdots, n$. $S(P, \Omega)$ is the closure of $S(P, \Omega)$ in Ω.

Curvature condition. Let $P \in \delta \Omega$ be a characteristic boundary point, that is, $v a(P) v=0$, where v is the unit inner normal to $\delta \Omega$ at P. Then $\nu \alpha^{k}(P)=0$ for each $k, k=1, \cdots, n$. Let \prod^{k} be the plane of $\alpha^{k}(P)$ and v through P. In this plane, the cross-section of $\delta \Omega$ and the projection of the trajectory of α^{k} through P are curves which are perpendicular to v at P. Let the curvatures of these curves at P be τ_{k}, for the sectional curvature of $\delta \Omega$, and σ_{k}, for the 'shadow curvature' [4] of the trajectory of α^{k}. Finally, define the 'excess curvature' ρ_{k} to be the difference $\tau_{k}-\sigma_{k}$.

Lemma. $\beta v-\sum_{k=1}^{n} \rho_{k}\left|\alpha^{k}\right|^{2}=b v-\sum_{k=1}^{n} \tau_{k}\left|\alpha^{k}\right|^{2}$ at P. (The sums are over those k for which $\alpha^{k}(P) \neq 0$.)

For the following results to hold, the curvature condition βv $\sum_{k=1}^{n} \rho_{k}\left|\alpha^{k}\right|^{2}>0$ must be satisfied at P.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 35J25, 35J70, 35K20.
 Key words and phrases. Elliptic-parabolic operators, maximum principle.
 ${ }^{1}$ This note summarizes results contained in the author's Ph.D. thesis, which was written under the direction of Professor Raymond Redheffer at the University of California, Los Angeles.

