PROPERTIES OF THREE ALGEBRAS RELATED TO L_{p}-MULTIPLIERS ${ }^{1}$

BY MICHAEL J. FISHER*
Communicated by J. L. Kelley, July 2, 1973

1. Introduction. In this paper we shall announce several properties of certain algebras which arise in the study of L_{p}-multipliers; detailed proofs will be given elsewhere. Let G be a locally compact abelian group and let Γ denote its dual group. Let $L_{p}(\Gamma)$ denote the space of p-integrable functions on Γ with respect to Haar measure, and let q denote the index which is conjugate to p. Let

$$
A_{p}(\Gamma)=\left[L_{p}(\Gamma) \hat{\otimes} L_{q}(\Gamma)\right] / K
$$

where K is the kernel of the convolution operator $c: L_{p} \hat{\otimes} L_{q}(\Gamma) \rightarrow C_{0}(\Gamma)$ by $c(f \otimes g)(\gamma)=(f * g)(\gamma) . A_{p}(\Gamma)$ is the p-Fourier algebra which was introduced by Figa-Talamanca in [6] where it was shown that $A_{p}(\Gamma)^{*}$ is isometrically isomorphic to $M_{p}(\Gamma)$, the bounded, translation invariant, linear operators on $L_{p}(\Gamma)$. Herz [11] showed that $A_{p}(\Gamma)$ is a Banach algebra under pointwise multiplication; it is known that $A_{2}(\Gamma)=A(\Gamma)=L_{1}(G)^{\wedge}$ and that the inclusions $A_{2}(\Gamma) \subset A_{p}(\Gamma) \subset A_{1}(\Gamma)=C_{0}(\Gamma)$ are norm decreasing if $1<p<2$; see [5], [6], [11] for the basic properties of $A_{p}(\Gamma)$. Let $B_{p}(\Gamma)$ denote the algebra of continuous functions f on Γ such that $f(\gamma) h(\gamma) \in A_{p}(\Gamma)$ whenever $h \in A_{p}(\Gamma)$. The multiplier algebra $B_{p}(\Gamma)$ is a Banach algebra in the operator norm. We have studied $B_{p}(\Gamma)$ in [8], [9]. Fix p in $1<p<2$.

Regard $L_{1}(\Gamma)$ as an algebra of convolution operators on $L_{p}(\Gamma)$ and let $m_{p}(\Gamma)$ denote the closure of $L_{1}(\Gamma)$ in $M_{p}(\Gamma)$. The first result of this paper says that $B_{p}(\Gamma)$ is isometrically isomorphic to the dual space $m_{p}(\Gamma)^{*}$. In the second result, we use certain properties of $B_{p}(\Gamma)$ to give a theorem of Eberlein type for $M_{p}(\Gamma)$. In the final section of the paper, we use

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 43A22; Secondary 43A15, 46J10, 47D15.

 Key words and phrases. p-Fourier algebra, multipliers, dual space representation, Eberlein's theorem.
 ${ }^{1}$ Research supported in part by the National Science Foundation grant GP-24574.

 * This paper is being published posthumously. Professor Michael J. Fisher died August 27, 1973. However, all correspondence concerning this paper should be addressed to the author at the address below.

