INTERPOLATION OF OPERATORS FOR Λ SPACES

BY ROBERT SHARPLEY

Communicated by Alberto Calderón, September 22, 1973

Lorentz and Shimogaki [2] have characterized those pairs of Lorentz Λ spaces which satisfy the interpolation property with respect to two other pairs of Λ spaces. Their proof is long and technical and does not easily admit to generalization. In this paper we present a short proof of this result whose spirit may be traced to Lemma 4.3 of [4] or perhaps more accurately to the theorem of Marcinkiewicz [5, p. 112]. The proof involves only elementary properties of these spaces and does allow for generalization to interpolation for n pairs and for M spaces, but these topics will be reported on elsewhere.

The Banach space Λ_{ϕ} [1, p. 65] is the space of all Lebesgue measurable functions f on the interval (0, l) for which the norm

$$||f||_{\phi} = \int_0^l f^*(s)\phi(s) \, ds$$

is finite, where ϕ is an integrable, positive, decreasing function on (0, l) and f^* (the decreasing rearrangement of |f|) is the almost-everywhere unique, positive, decreasing function which is equimeasurable with |f|.

A pair of spaces $(\Lambda_{\phi}, \Lambda_{\psi})$ is called an interpolation pair for the two pairs $(\Lambda_{\phi_1}, \Lambda_{\psi_1})$ and $(\Lambda_{\phi_2}, \Lambda_{\psi_2})$ if each linear operator which is bounded from Λ_{ϕ_i} to Λ_{ψ_i} (both i=1, 2) has a unique extension to a bounded operator from Λ_{ϕ} to Λ_{ψ} .

THEOREM (LORENTZ-SHIMOGAKI). A necessary and sufficient condition that $(\Lambda_{\phi}, \Lambda_{\psi})$ be an interpolation pair for $(\Lambda_{\phi_1}, \Lambda_{\psi_1})$ and $(\Lambda_{\phi_2}, \Lambda_{\psi_2})$ is that there exist a constant A independent of s and t so that

(*)
$$\Psi(t)/\Phi(s) \leq A \max_{i=1,2} (\Psi_i(t)/\Phi_i(s))$$

holds, where $\Phi(s) = \int_0^s \phi(r) dr$, \cdots , $\psi_2(t) = \int_0^t \Psi_2(r) dr$.

PROOF. We only sketch the proof of the necessity since it is standard.

AMS (MOS) subject classifications (1970). Primary 46E30, 46E35, 47A30.

Key words and phrases. Lorentz Λ_{ϕ} space, decreasing rearrangement, interpolation of operators.