INTERPOLATION OF OPERATORS FOR Λ SPACES

BY ROBERT SHARPLEY
Communicated by Alberto Calderón, September 22, 1973

Lorentz and Shimogaki [2] have characterized those pairs of Lorentz Λ spaces which satisfy the interpolation property with respect to two other pairs of Λ spaces. Their proof is long and technical and does not easily admit to generalization. In this paper we present a short proof of this result whose spirit may be traced to Lemma 4.3 of [4] or perhaps more accurately to the theorem of Marcinkiewicz [5, p. 112]. The proof involves only elementary properties of these spaces and does allow for generalization to interpolation for n pairs and for M spaces, but these topics will be reported on elsewhere.

The Banach space $\Lambda_{\phi}[1$, p. 65] is the space of all Lebesgue measurable functions f on the interval $(0, l)$ for which the norm

$$
\|f\|_{\phi}=\int_{0}^{l} f^{*}(s) \phi(s) d s
$$

is finite, where ϕ is an integrable, positive, decreasing function on $(0, l)$ and f^{*} (the decreasing rearrangement of $|f|$) is the almost-everywhere unique, positive, decreasing function which is equimeasurable with $|f|$.

A pair of spaces $\left(\Lambda_{\phi}, \Lambda_{\psi}\right)$ is called an interpolation pair for the two pairs $\left(\Lambda_{\phi_{1}}, \Lambda_{\psi_{1}}\right)$ and $\left(\Lambda_{\phi_{2}}, \Lambda_{\psi_{2}}\right)$ if each linear operator which is bounded from $\Lambda_{\phi_{i}}$ to $\Lambda_{\psi_{i}}$ (both $i=1,2$) has a unique extension to a bounded operator from Λ_{ϕ} to Λ_{ψ}.

Theorem (Lorentz-Shimogaki). A necessary and sufficient condition that $\left(\Lambda_{\phi}, \Lambda_{\psi}\right)$ be an interpolation pair for $\left(\Lambda_{\phi_{1}}, \Lambda_{\psi_{1}}\right)$ and $\left(\Lambda_{\phi_{2}}, \Lambda_{\psi_{2}}\right)$ is that there exist a constant A independent of s and t so that

$$
\begin{equation*}
\Psi(t) / \Phi(s) \leqq A \max _{i=1,2}\left(\Psi_{i}^{*}(t) / \Phi_{i}(s)\right) \tag{*}
\end{equation*}
$$

holds, where $\Phi(s)=\int_{0}^{s} \phi(r) d r, \cdots, \psi_{2}(t)=\int_{0}^{t} \Psi_{2}(r) d r$.
Proof. We only sketch the proof of the necessity since it is standard.

Key words and phrases. Lorentz Λ_{ϕ} space, decreasing rearrangement, interpolation of operators.

