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1. Introduction. Various nonlinear problems, not accessible to 
standard existence theorems, led to new techniques which allowed the 
solution of the isometric embedding problem (J. Nash [1]) and stability 
problems of Hamiltonian systems connected with small divisors (A. N. 
Kolmogorov, V. I. Arnold, J. Moser [2]-[6]). Subsequently, the under­
lying ideas were abstracted as implicit function theorems [7]-[10], which 
however do not cover most small divisor problems. It is the aim of this 
paper to formulate and prove a simple implicit function theorem also 
covering many of these problems. The underlying idea is due to H. 
Rüssmann [11]. Its basic idea is a modification of Newton's method in 
the framework of linear spaces and not in that of the group of coordinate 
transformations as it was used in [2]-[6], [14]. The proof of this theorem 
is elementary; the real difficulty, however, lies in showing that the 
assumptions can be met in the relevant applications. We mention as a 
new application the perturbation theory of invariant tori of dimension 
m^n of globally Hamiltonian diffeomorphisms defined on a 2#-dimen-
sional symplectic manifold, in which we were able to verify those assump­
tions. The proof will be published elsewhere. I am indebted to J. Moser 
for acquainting me with small divisor problems. 

2. Implicit function theorem. The following set up is prompted by H. 
Jacobowitz [9] and L. Nirenberg [10]. We consider three one-parameter 
families of Banach spaces Xa9 Ya9 Za in the closed unit interval: for 
O^ t f ' ^c r^ l , 

(1) Xo 2 *o> ^Xa^Xx 

(and analogous for Ya and Za) and with norms | \a in Xa, \ \a in Ya and 
| | a in Za satisfying 

(2) I ƒ |,< ^ \f U \u\9. ^ \u\a, \z\9. ^ \z\9 
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