RESTRICTED IDEALS IN RINGS OF ANALYTIC FUNCTIONS

BY ANDREW ADLER AND R. DOUGLAS WILLIAMS

Communicated by Creighton Buck, May 16, 1973

Introduction. Let Y be a connected, noncompact Riemann surface, and let A be the ring of all analytic functions on Y. It is known that the ideal theory of the ring A is strikingly similar to the ideal theory of the ring C(X) of all real valued continuous functions on a completely regular topological space X. We show that locally much of the ideal theory of A can be recovered from the ideal theory of $C(\Sigma)$ for a particular space Σ . This will provide a device for transforming results about the ideal theory of $C(\Sigma)$ into results about the ideal theory of A.

1. Let M be a free maximal ideal of A, and let P^* denote the ideal $\bigcap_{n \in N} M^n$. P^* is the largest prime ideal properly contained in M. Let A_{P^*} be the localization of A at P^* . We show in this section that the ideal theory of A_{P^*} is essentially the same as the ideal theory of $C(\Sigma)/P$ for a suitably chosen space Σ and a suitably chosen minimal prime ideal P of $C(\Sigma)$. Let $t \in M - \{0\}$. Z(t), the set of zeros of t, is a countably infinite closed discrete subset of Y. Denote Z(t) by N; we think of Z(t) as a copy of the space N of positive integers. The collection

$$\mu = \{Z(f) \cap N : f \in M\}$$

is a free ultrafilter on N and hence corresponds to a point σ of $\beta N - N$. Let Σ be the space $N \cup \{\sigma\}$, where Σ has the relative topology of βN , and let P be the minimal prime ideal of $C(\Sigma)$ given by

$$P = \{ f \in C(\Sigma) : Z(f) \cap N \in \mu \}.$$

The ideals of A_{P^*} (respectively $C(\Sigma)/P$) under multiplication of ideals and inclusion form an ordered semigroup $\mathscr{I}(A_{P^*})$ (respectively $\mathscr{I}(C(\Sigma)/P)$).

PROPOSITION 1. There exists an order preserving isomorphism of $\mathscr{I}(A_{P^*})$ onto $\mathscr{I}(C(\Sigma)|P)$ that maps the set of principal ideals of A_{P^*} onto the set of principal ideals of $C(\Sigma)|P$.

AMS (MOS) subject classifications (1970). Primary 46E25; Secondary 13A15.

Key words and phrases. Rings of analytic functions, rings of continuous functions, ideals, valuation rings, ultrapowers.

Copyright © American Mathematical Society 1974