GENERAL INTERPOLATING SEQUENCES IN DISKS AND POLYDISKS

BY ERIC P. KRONSTADT¹

Communicated by Shlomo Sternberg, June 27, 1973

Let A be a uniform algebra, i.e. a closed subalgebra of the continuous functions on a compact Hausdorf space which separates points, contains constants, and is equipped with the sup norm topology. Let D^n be the (open) unit polydisk in C^n ; let $H^{\infty}(D^n, A)$ be the Banach algebra of bounded, analytic, A-valued functions on D^n equipped with the sup norm (see [3, pp. 224-232] for a description of such functions); and let $l^{\infty}A$ be the Banach algebra of bounded sequences of elements of A. If S = $\{a_i\}_{i=1}^{\infty} \in D^n$ is a sequence of points in D^n , we can define a map, $T: H^{\infty}(D^n, A) \rightarrow l^{\infty}A$ by $T(f) = \{f(a_i)\}_{i=1}^{\infty}$. We will say S is an interpolating sequence w.r.t. A if T is surjective. If S is an interpolating sequence w.r.t. C we will simply say S is an interpolating sequence, and if S is an interpolating sequence w.r.t. every uniform algebra, we will say S is a general interpolating sequence.

If $S = \{a_i\}_{i=1}^{\infty} \subset D^n$ is an interpolating sequence, then it is known that S must be uniformly separated, i.e. there exists a constant M and functions $f_1, f_2, \dots \in H^{\infty}(D^n)$ such that for all i, $||f_i|| \leq M$ and $f_i(a_i) = 1$ while f_i is zero on the remaining points of S. (We will use $H^{\infty}(D^n)$ for $H^{\infty}(D^n, \mathbb{C})$.) In 1958, L. Carleson [2] showed that for $S \subset D$ $(D=D^1)$, uniform separation is a necessary and sufficient condition that S be an interpolating sequence (w.r.t. \mathbb{C}). We will produce a sufficient condition for a sequence to be a general interpolating sequence, and indicate some additional criteria, which, along with uniform separation, guarantees general interpolation.

1. General interpolating, uniformly separated, and α -separated sequences. If S is an interpolating sequence w.r.t. A, the map $T: H^{\infty}(D^n, A) \rightarrow l^{\infty}A$

AMS (MOS) subject classifications (1970). Primary 30A80, 46J10, 32E25; Secondary 30A96, 32A30, 46J15.

Key words and phrases. Interpolating sequence, uniformly separated sequence, general interpolating sequence, nontangential wedge, uniform algebra valued functions.

¹ The results presented in this paper represent part of the author's doctoral dissertation which was written at Harvard University under the direction of Professor Andrew M. Gleason.