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The purpose of this note is to describe how central multiplier theorems 
for compact Lie groups can be reduced to corresponding results on a 
maximal torus. We shall show that every multiplier theorem for multiple 
Fourier series gives rise to a corresponding theorem for such groups and, 
also, for expansions in terms of special functions. 

We use the notation and terminology of N. J. Weiss [4]. Let G denote 
a simply connected semisimple Lie group, g its Lie algebra and ï) a 
maximal abelian subalgebra; P+ the set of positive roots in I)*, the dual 
of t) (with respect to some order), and ( , ) is the inner product on f)* 
induced by the Killing form. With X=(Xl9 • • • , Xx) e Zl we associate the 
weight A=2l=i^"<> where TTÎ are the fundamental weights adapted to 
the simple roots. The characters %x of G are then indexed by those X with 
nonnegative integer coefficients. The degree dx of the corresponding 
representation is then given by 

^=na+/u)/n(/ux 
<xeP+ I «eP+ 

where / ?= | 2aep+ a- We now define the difference operator 3) on 
sequences mA, X e Zl

9 by first putting i)amA=mA_a-mA (where the root a 
is identified with its coordinates with respect to the basis of 7r/s) and 
then letting 

^ A = (nAeW; 
\ a e p+ / 

this is a difference operator of order (n—/)/2 («=dim (?, /=dim I)). 
A central convolution operator M on G admits a formal expansion 

-W~2A.^O^AZA* The sequence {mA} is called a multiplier for LP(G) if 
the operator M * / = 2 ^xmxi.Xx * ƒ)> defined for generalized trigonometric 
polynomials ƒ (see [3]), can be extended to a bounded operator on LP(G). 
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