CENTRAL MULTIPLIER THEOREMS FOR COMPACT LIE GROUPS

BY RONALD R. COIFMAN AND GUIDO WEISS ${ }^{1}$

Communicated by Elias Stein, June 22, 1973
The purpose of this note is to describe how central multiplier theorems for compact Lie groups can be reduced to corresponding results on a maximal torus. We shall show that every multiplier theorem for multiple Fourier series gives rise to a corresponding theorem for such groups and, also, for expansions in terms of special functions.

We use the notation and terminology of N. J. Weiss [4]. Let G denote a simply connected semisimple Lie group, \mathfrak{g} its Lie algebra and \mathfrak{h} a maximal abelian subalgebra; P^{+}the set of positive roots in \mathfrak{h}^{*}, the dual of \mathfrak{h} (with respect to some order), and (,) is the inner product on \mathfrak{h}^{*} induced by the Killing form. With $\lambda=\left(\lambda_{1}, \cdots, \lambda_{l}\right) \in \mathbf{Z}^{l}$ we associate the weight $\lambda=\sum_{i=1}^{l} \lambda_{i} \pi_{i}$, where π_{i} are the fundamental weights adapted to the simple roots. The characters χ_{λ} of G are then indexed by those λ with nonnegative integer coefficients. The degree d_{λ} of the corresponding representation is then given by

$$
d_{\lambda}=\prod_{\alpha \in P^{+}}(\lambda+\beta, \alpha) / \prod_{\alpha \in P^{+}}(\beta, \alpha)
$$

where $\beta=\frac{1}{2} \sum_{\alpha \in P+} \alpha$. We now define the difference operator \mathscr{D} on sequences $m_{\lambda}, \lambda \in \mathbf{Z}^{l}$, by first putting $D_{\alpha} m_{\lambda}=m_{\lambda-\alpha}-m_{\lambda}$ (where the root α is identified with its coordinates with respect to the basis of π_{i} 's) and then letting

$$
\mathscr{D} m_{\lambda}=\left(\prod_{\alpha \in P^{+}} D_{\alpha}\right) m_{\lambda}
$$

this is a difference operator of order $(n-l) / 2(n=\operatorname{dim} G, l=\operatorname{dim} \mathfrak{h})$.
A central convolution operator M on G admits a formal expansion $M \sim \sum_{\lambda_{i} \geqq 0} d_{\lambda} m_{\lambda} \chi_{\lambda}$. The sequence $\left\{m_{\lambda}\right\}$ is called a multiplier for $L^{p}(G)$ if the operator $M * f=\sum d_{\lambda} m_{\lambda}\left(\chi_{\lambda} * f\right)$, defined for generalized trigonometric polynomials f (see [3]), can be extended to a bounded operator on $L^{p}(G)$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 43A75, 42 A 18.
 Key words and phrases. Multipliers, maximal torus, compact Lie groups.
 ${ }^{1}$ This research was supported, in part, by U.S. Army Grant \#DA-ARO-D-31-124-72-G143.

