CENTRAL MULTIPLIER THEOREMS FOR COMPACT LIE GROUPS

BY RONALD R. COIFMAN AND GUIDO WEISS¹ Communicated by Elias Stein, June 22, 1973

The purpose of this note is to describe how central multiplier theorems for compact Lie groups can be reduced to corresponding results on a maximal torus. We shall show that every multiplier theorem for multiple Fourier series gives rise to a corresponding theorem for such groups and, also, for expansions in terms of special functions.

We use the notation and terminology of N. J. Weiss [4]. Let G denote a simply connected semisimple Lie group, g its Lie algebra and h a maximal abelian subalgebra; P^+ the set of positive roots in \mathfrak{h}^* , the dual of h (with respect to some order), and (,) is the inner product on \mathfrak{h}^* induced by the Killing form. With $\lambda = (\lambda_1, \dots, \lambda_l) \in \mathbb{Z}^l$ we associate the weight $\lambda = \sum_{i=1}^l \lambda_i \pi_i$, where π_i are the fundamental weights adapted to the simple roots. The characters χ_{λ} of G are then indexed by those λ with nonnegative integer coefficients. The degree d_{λ} of the corresponding representation is then given by

$$d_{\lambda} = \prod_{\alpha \in P^+} (\lambda + \beta, \alpha) \Big/ \prod_{\alpha \in P^+} (\beta, \alpha),$$

where $\beta = \frac{1}{2} \sum_{\alpha \in P^+} \alpha$. We now define the difference operator \mathscr{D} on sequences m_{λ} , $\lambda \in \mathbb{Z}^i$, by first putting $D_{\alpha}m_{\lambda} = m_{\lambda-\alpha} - m_{\lambda}$ (where the root α is identified with its coordinates with respect to the basis of π_i 's) and then letting

$$\mathscr{D}m_{\lambda} = \left(\prod_{\alpha \in P^+} D_{\alpha}\right)m_{\lambda};$$

this is a difference operator of order (n-l)/2 $(n=\dim G, l=\dim \mathfrak{h})$.

A central convolution operator M on G admits a formal expansion $M \sim \sum_{\lambda_i \ge 0} d_{\lambda} m_{\lambda} \chi_{\lambda}$. The sequence $\{m_{\lambda}\}$ is called a multiplier for $L^p(G)$ if the operator $M * f = \sum d_{\lambda} m_{\lambda}(\chi_{\lambda} * f)$, defined for generalized trigonometric polynomials f (see [3]), can be extended to a bounded operator on $L^p(G)$.

AMS (MOS) subject classifications (1970). Primary 43A75, 42A18.

Key words and phrases. Multipliers, maximal torus, compact Lie groups.

¹ This research was supported, in part, by U.S. Army Grant #DA-ARO-D-31-124-72-G143.

Copyright @ American Mathematical Society 1974