COMPLETION AND EMBEDDING BETWEEN PSEUDO (v, k, λ) -DESIGNS AND (v, k, λ) -DESIGNS

BY OSVALDO MARRERO

Communicated by Dock Rim, May 29, 1973

ABSTRACT. Each of four arithmetical conditions on the parameters v, k, and λ of a given primary pseudo (v, k, λ)-design is necessary and sufficient to ensure completion or embedding between the given design and some (v', k', λ')-design.

Let $X = \{x_1, \dots, x_v\}$, and let X_1, \dots, X_v be subsets of X. The subsets X_1, \dots, X_v are said to form a (v, k, λ) -design if

each X_j $(1 \le j \le v)$ has k elements; any two distinct X_i , X_j $(1 \le i, j \le v)$ intersect in λ elements; and $0 \le \lambda < k < v - 1$.

Such a design is completely determined by its *incidence matrix*; this is the (0, 1)-matrix $A = [a_{ij}]$ defined by taking $a_{ij} = 1$ if $x_j \in X_i$ and $a_{ij} = 0$ if $x_j \notin X_i$. More information about these combinatorial designs is available, for example, in [2] and [5].

Let $Y = \{y_1, \dots, y_v\}$, and let Y_1, \dots, Y_{v-1} be subsets of Y. The subsets Y_1, \dots, Y_{v-1} are said to form a *pseudo* (v, k, λ) -design if

each Y_i $(1 \le j \le v-1)$ has k elements; any two distinct Y_i , Y_j $(1 \le i, j \le v-1)$ intersect in λ elements; and $0 < \lambda < k < v-1$.

The incidence matrix of a pseudo (v, k, λ) -design is defined in the same manner as the incidence matrix of a (v, k, λ) -design.

The consideration of pseudo (v, k, λ) -designs was suggested during the course of study of "modular hadamard matrices" [3], [4]. Related work has been published by Bridges [1] and Woodall [6].

A pseudo (v, k, λ) -design is "almost" (its incidence matrix lacks one row) a (v, k, λ) -design; this suggests the consideration of "completion and embedding" between these two combinatorial designs. Let A be the incidence matrix of a pseudo (v, k, λ) -design. Then it *might* be possible to

AMS (MOS) subject classifications (1970). Primary 05B05, 05B30, 62K10.

Key words and phrases. Block designs, (v, k, λ) -designs, pseudo (v, k, λ) -designs, completion and embedding of block designs.

Copyright © American Mathematical Society 1974