COMPLETION AND EMBEDDING BETWEEN PSEUDO (v, k, λ)-DESIGNS AND (v, k, λ)-DESIGNS

BY OSVALDO MARRERO

Communicated by Dock Rim, May 29, 1973

Abstract

Each of four arithmetical conditions on the parameters v, k, and λ of a given primary pseudo (v, k, λ)-design is necessary and sufficient to ensure completion or embedding between the given design and some ($v^{\prime}, k^{\prime}, \lambda^{\prime}$)-design.

Let $X=\left\{x_{1}, \cdots, x_{v}\right\}$, and let X_{1}, \cdots, X_{v} be subsets of X. The subsets X_{1}, \cdots, X_{v} are said to form a (v, k, λ)-design if
each $X_{j}(1 \leqq j \leqq v)$ has k elements;
any two distinct $X_{i}, X_{j}(1 \leqq i, j \leqq v)$ intersect in λ elements; and $0 \leqq \lambda<k<v-1$.

Such a design is completely determined by its incidence matrix; this is the (0,1)-matrix $A=\left[a_{i j}\right]$ defined by taking $a_{i j}=1$ if $x_{j} \in X_{i}$ and $a_{i j}=0$ if $x_{j} \notin X_{i}$. More information about these combinatorial designs is available, for example, in [2] and [5].

Let $Y=\left\{y_{1}, \cdots, y_{v}\right\}$, and let Y_{1}, \cdots, Y_{v-1} be subsets of Y. The subsets Y_{1}, \cdots, Y_{v-1} are said to form a pseudo (v, k, λ)-design if
each $Y_{j}(1 \leqq j \leqq v-1)$ has k elements;
any two distinct $Y_{i}, Y_{j}(1 \leqq i, j \leqq v-1)$ intersect in λ elements; and $0<\lambda<k<v-1$.

The incidence matrix of a pseudo (v, k, λ)-design is defined in the same manner as the incidence matrix of a (v, k, λ)-design.

The consideration of pseudo (v, k, λ)-designs was suggested during the course of study of "modular hadamard matrices" [3], [4]. Related work has been published by Bridges [1] and Woodall [6].

A pseudo (v, k, λ)-design is "almost" (its incidence matrix lacks one row) a (v, k, λ)-design; this suggests the consideration of "completion and embedding" between these two combinatorial designs. Let A be the incidence matrix of a pseudo (v, k, λ)-design. Then it might be possible to

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 05B05, 05B30, 62K10.
 Key words and phrases. Block designs, (v, k, λ)-designs, pseudo (v, k, λ)-designs, completion and embedding of block designs.

 Copyright © American Mathematical Society 1974

