UNLINKING UP TO COBORDISM

BY M. A. GUTIÉRREZ

Communicated by Edgar Brown, April 10, 1973

0. Introduction. Let S_i be a copy of S^n $(n \ge 3)$ for i = 1, ..., m. An *m*-link of dimension *n* is an embedding $L:S_1 + \cdots + S_m \to S^{n+2}$, where + stands for disjoint union.

We say L is a boundary link if it extends to an embedding $V_1 + \cdots + V_m \rightarrow S^{n+2}$, where V_i is a (n + 1)-dimensional, compact, framed manifold with $\partial V_i = S_i$. The V_i are called *Seifert* manifolds for L. In particular, if the V_i are disks, we say that L is trivial.

A link L is split if we can find (n + 1)-spheres Σ_j (j = 1, ..., m - 1), smoothly embedded in S^{n+2} and disjoint from Im(L) as well as from each other, and such that each of the *m* connected components of $S^{n+2} - \bigcup \Sigma_j$ contains one of the knots $L(S_i)$.

In [2], the notion of cobordism is defined. The cobordism classes of *m*-links of dimension *n* form, under componentwise connected sum, an abelian group $C_n^{(m)}$. The group $C_n = C_n^{(1)}$ has been computed in [4] for *n* odd ≥ 3 , and found to be trivial for *n* even ≥ 2 in [2]. The purpose of this note is to announce the following result:

Every m-link of dimension $n \ge 3$ is cobordant to a split link; in particular: If n is odd ≥ 3 , $C_n^{(m)} = C_n \oplus \cdots \oplus C_n$ (m times). If n is even ≥ 4 , $C_n^{(m)} = 0$.

1. The fundamental group. The normal bundle of $Im(L) \subset S^{n+2}$ is trivial; let

$$X = \overline{S^{n+2} - (T_1 + \cdots + T_m)}$$

where T_i is a tubular neighborhood of $L(S_i)$ diffeomorphic to $S_i \times D^2$. The compact manifold X is called the *complement* of L and $\pi = \pi_1(X)$ its group. Observe, $\partial X = (S_1 \times S^1) + \cdots + (S_m \times S^1)$.

The inclusion $\partial X \subset \overline{X}$ induces a homomorphism of fundamental groups $h: F_m \to \pi$, where F_m is the free group in *m* generators a_i . The elements $h(a_i)$ are called *meridians* of *L*.

LEMMA 1. The homomorphism h induces a monomorphism

$$h_*:F_m \to \pi/\pi_a$$

where π_{ω} is the ω th term of the lower central series of π (cf. [6, p. 157]).

AMS (MOS) subject classifications (1970). Primary 57C45.

Key words and phrases. Boundary link, split link, lower central series.

Copyright © American Mathematical Society 1974