BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 6, November 1973

A BOREL INVARIANTIZATION

BY ROBERT VAUGHT¹ Communicated by J. Feldman, April 10, 1973

Let G be a nonmeager topological group having a countable basis, and suppose G acts on a topological space X. We show in §1 that for each Borel set $B \subseteq X$ there is an invariant Borel set B^* lying between the usual invariantizations

$$B^- = \{x : \forall g(gx \in B)\} \text{ and } B^+ = \{x : \exists g(gx \in B)\}.$$

Moreover, the map $B \mapsto B^*$ has other regularities. Using §1, we establish in §2 invariant versions for some classical theorems. For example, we show: Every invariant analytic set is the union of \aleph_1 invariant Borel sets. The transform * is applied to infinitary logic in §3. We give a new proof of the theorem: "invariant Borel = $L_{\omega_1\omega}$ ", and obtain several new theorems of the same form.

A detailed presentation will appear in Fundamenta Mathematica.

1. A transform. We assume the action $(g, x) \mapsto gx \in X$ is continuous in each variable separately (and, as usual, that ex = x and g(hx) = (gh)x). Suppose \mathscr{H} is a family of nonempty open sets such that any nonempty open set includes a member of \mathscr{H} . (The existence of a countable \mathscr{H} is a sufficient countability assumption.) Below "U", "V" always denote members of \mathscr{H} and similarly $x \in X, g \in G, B \subseteq X, \alpha < \omega_1$, and $F: \omega \to \omega$. (A) is the smallest family containing all open sets and closed under complement, countable union, and the operation (A). (For (A) and other notions below, see [3].)

DEFINITION 1.1. (a) $B^x = \{g: g^{-1}x \in B\}.$

(b) $B^* = \{x: B^x \text{ is comeager in } G\}$; and in general, $B^*_U = \{x: B^x \cap U \text{ is comeager in } U\}$.

THEOREM 1.2. (a) B_{II}^* is closed if B is closed.

(b) $(\bigcap_{n} B_{n})_{U}^{*} = \bigcap_{n} (B_{n})_{U}^{*}.$ (c) $(\sim B)_{U}^{*} = \sim \bigcup \{B_{V}^{*} : V \subseteq U\}.$ (d) $x \in (\bigcup_{F} \bigcap_{n} B_{F \upharpoonright n})_{U}^{*}$ if and only if $(\forall U_{0} \subseteq U)(\exists V_{0} \subseteq U_{0})(\exists k_{0})$ $(\forall U_{1} \subseteq V_{0})(\exists V_{1} \subseteq U_{1})(\exists k_{1}) \cdots \forall n[x \in (B_{k_{0} \cdots k_{n}})_{V_{n}}^{*}].$

The left side of (d) is the operation (A), while the right side denotes an

AMS (MOS) subject classifications (1970). Primary 02B25, 54H05, 54H15.

¹ Partially supported by NSF Grant GP-24352.