A BOREL INVARIANTIZATION

BY ROBERT VAUGHT ${ }^{1}$

Communicated by J. Feldman, April 10, 1973
Let G be a nonmeager topological group having a countable basis, and suppose G acts on a topological space X. We show in $\S 1$ that for each Borel set $B \subseteq X$ there is an invariant Borel set B^{*} lying between the usual invariantizations

$$
B^{-}=\{x: \forall g(g x \in B)\} \quad \text { and } \quad B^{+}=\{x: \exists g(g x \in B)\} .
$$

Moreover, the map $B \mapsto B^{*}$ has other regularities. Using §1, we establish in $\S 2$ invariant versions for some classical theorems. For example, we show: Every invariant analytic set is the union of \aleph_{1} invariant Borel sets. The transform * is applied to infinitary logic in §3. We give a new proof of the theorem: "invariant Borel $=L_{\omega_{1} \omega}$ ", and obtain several new theorems of the same form.

A detailed presentation will appear in Fundamenta Mathematica.

1. A transform. We assume the action $(g, x) \mapsto g x \in X$ is continuous in each variable separately (and, as usual, that $e x=x$ and $g(h x)=(g h) x)$. Suppose \mathscr{H} is a family of nonempty open sets such that any nonempty open set includes a member of \mathscr{H}. (The existence of a countable \mathscr{H} is a sufficient countability assumption.) Below " U ", " V " always denote members of \mathscr{H} and similarly $x \in X, g \in G, B \subseteq X, \alpha<\omega_{1}$, and $F: \omega \rightarrow \omega$. (A) is the smallest family containing all open sets and closed under complement, countable union, and the operation (A). (For (A) and other notions below, see [3].)

DEFINITION 1.1. (a) $B^{x}=\left\{g: g^{-1} x \in B\right\}$.
(b) $B^{*}=\left\{x: B^{x}\right.$ is comeager in $\left.G\right\}$; and in general, $B_{U}^{*}=\left\{x: B^{x} \cap U\right.$ is comeager in $U\}$.

Theorem 1.2. (a) B_{U}^{*} is closed if B is closed.
(b) $\left(\bigcap_{n} B_{n}\right)_{U}^{*}=\bigcap_{n}\left(B_{n}\right)_{U}^{*}$.
(c) $(\sim B)_{U}^{*}=\sim \bigcup^{n}\left\{B_{V}^{*}: V \subseteq U\right\}$.
(d) $x \in\left(\bigcup_{F} \bigcap_{n} B_{F \upharpoonright n}\right)_{U}^{*}$ if and only if

$$
\begin{aligned}
& \left(\forall U_{0} \subseteq U\right)\left(\exists V_{0} \subseteq U_{0}\right)\left(\exists k_{0}\right) \\
& \quad\left(\forall U_{1} \subseteq V_{0}\right)\left(\exists V_{1} \subseteq U_{1}\right)\left(\exists k_{1}\right) \cdots \forall n\left[x \in\left(B_{k_{0} \cdots k_{n}}\right) * V_{n}\right]
\end{aligned}
$$

The left side of (d) is the operation (A), while the right side denotes an

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 02B25, 54H05, 54H15.
 ${ }^{1}$ Partially supported by NSF Grant GP-24352.

