A COHOMOLOGY FOR FOLIATED MANIFOLDS

BY JAMES L. HEITSCH ${ }^{1}$
Communicated by S. S. Chern, May 1, 1973

1. Introduction. Let M be a connected manifold and τ a foliation on M. τ is then an involutive subbundle of $T M$, the tangent bundle of M. Denote by v the normal bundle to $\tau, v=T M / \tau$. We denote sections of a bundle P over M by $\Gamma(P)$. All manifolds, bundles and maps are assumed to be C^{∞}.

There is a canonical connection ∇ on v which is flat along τ [B]. Consider the complex

$$
\Gamma(v) \xrightarrow{d} \Gamma\left(v \otimes \Lambda^{1} \tau^{*}\right) \xrightarrow{d} \Gamma\left(v \otimes \Lambda^{2} \tau^{*}\right) \xrightarrow{d} \cdots,
$$

where τ^{*} is the cotangent bundle to the foliation and

$$
\begin{aligned}
& \hat{d}(\sigma)\left(X_{1}, \ldots, X_{k+1}\right) \\
& \quad=\sum_{1 \leqq i \leqq k+1}(-1)^{i} \nabla_{X_{i}}\left(\sigma\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{k+1}\right)\right) \\
& \quad+\sum_{1 \leqq i<j \leqq k+1}(-1)^{i+j+1} \sigma\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right)
\end{aligned}
$$

for $\sigma \in \Gamma\left(v \otimes \Lambda^{k} \tau^{*}\right), X_{1}, \ldots, X_{k+1} \in \Gamma(\tau)$.
Since the curvature tensor of ∇ restricted to τ is identically zero we have that $\hat{d} \circ \hat{d}=0$. Denote the homology of this complex by $F^{*}(\tau ; v)$. This is the cohomology of the Lie algebra of vector fields tangent to the foliation with coefficients in sections of the normal bundle, the representation being given by the connection [GF].

In general the groups $F^{k}(\tau ; v)$ are not finitely generated (the complex is not elliptic) but they satisfy the following.
(i) F^{*} is a functor from the category of foliated manifolds and transverse maps to the category of abelian groups and homomorphisms.
(ii) If $f: N \rightarrow M$ is an embedded transverse submanifold, we can define relative cohomology groups $F^{*}(\tau ; v, f)$ and obtain the usual long exact sequence.
(iii) F^{*} is an invariant of the diffeomorphism type of the foliation. However, F^{*} is not an invariant of the integrable homotopy type of the foliation when M is an open manifold.
2. Interpretation of $F^{1}(\tau ; v)$. Fix a Riemannian metric on M and think

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 14F05, 55B30, 57D30.
 ${ }^{1}$ Supported in part by National Science Foundation grant GP-34785X.

