ABSOLUTELY SUMMING, L_1 FACTORIZABLE OPERATORS AND THEIR APPLICATIONS

BY Y. GORDON¹ AND D. R. LEWIS

Communicated by Robert Bartle, March 5, 1973

Grothendieck asked in [3], Problem 2, p. 72 and in the remarks on p. 39, whether every 1-absolutely summing operator between two Banach spaces can be factored through an L_1 space. Theorem 2 announces the negative answer to this question.

Corollaries 1 and 2 provide counterexamples to two other questions equivalent to Problem 2, and mentioned in [3]: Can every operator T, whose adjoint T' is 1-absolutely summing, be factored through a C(K) space? Is every operator which has the form UV, where U' and V are both 1-absolutely summing, an integral operator?

Theorems 3 and 5 establish the existence of a sequence of finitedimensional Banach spaces which have the property that their unconditional basis constants tend to infinity. This answers the question mentioned for example in [1], [4], [5], [7] and asked also by A. Pełczyński and H. P. Rosenthal.

Part (5) of Theorem 4 settles a conjecture of McCarthy [8, p. 269] regarding the distance of $\mathscr{L}(l_2^n, l_2^n)$ from the subspaces of l_1 .

Theorem 5 answers Problem 2 [6] by proving that when $1 \le p \ne 2 \le \infty$, M_{σ_n} (see definition below) has no unconditional basis.

Detailed proofs of these and other results will be given elsewhere.

Let $\mathscr{L}(E, F)$ denote the space of operators between two Banach spaces E and F. $E \otimes^{\alpha} F$ denotes the completion under the α norm of the algebraic tensor product $E \otimes F$. In particular, $l_2 \otimes^{\vee} l_2$, $l_2 \otimes^{\wedge} l_2$ and $l_2 \otimes^{\sigma} l_2$ are the spaces of *compact*, *integral* and *Hilbert-Schmidt* operators respectively, from l_2 to l_2 . Here \vee and \wedge denote the "least" and "greatest" crossnorms respectively [3]. Other classes of operators considered here are:

(1) $\Pi_p(E, F) (1 \le p \le \infty)$, the space of *p*-absolutely summing operators from *E* to *F* equipped with the norm π_p [9].

(2) $I_p(E, F)$, the space of *p*-integral operators from E to F equipped with the norm i_p [10].

(3) $\Gamma_p(E, F)$, the space of L_p -factorizable operators from E to F, that is, $T \in \Gamma_p(E, F)$ if and only if $T \in \mathscr{L}(E, F)$ and there is a positive measure space (Ω, Σ, μ) and $A \in \mathscr{L}(E, L_p(\mu)), B \in \mathscr{L}(L_p(\mu), F'')$ such that iT = BA,

AMS (MOS) subject classifications (1970). Primary 46B15, 47B10.

¹ Author is partially supported by National Science Foundation Grant GP-34193.

Copyright © American Mathematical Society 1974