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Let K be a subfield of a cyclotomic extension of the rational field Q. 
The Schur group of K is the subgroup S(K) of the Brauer group of K 
consisting of those classes of central simple K algebras represented by an 
algebra which appears as a direct summand of a group algebra Q\G\ for 
some finite group G. For a prime p let S(K)p denote the subgroup consist
ing of elements having p-power order. It is known by [1] that S(K)p can 
have an element of order pa only when a primitive pa root of unity, epa, is 
i nK. 

Suppose K is a field which satisfies Q(spa) ^ K ç Q(en) and pa is the 
highest power of p dividing n. It is known that 

(1) S(K)p = K® S(Q(spa))p 

in the case K = Q(sn). That is every element in S(K)p is represented by an 
algebra K ® B with B central simple over Q(spa) [2], 

The assertion (1) also holds for K if p does not divide (Q(en):K). In this 
paper we present, for each prime p, fields K for which (1) does not hold. 

Let p be a prime and r and s distinct primes such that r = s = 1 mod p. 
Then the field L = g(ep, gr, es) has two nontrivial automorphisms cr, T 
which satisfy 

(i) CP = TP = l 

(ii) G fixes sp and sr; x fixes ap and ss. 
Let K be the subfield of L fixed by <(7, T>. Let A be the algebra defined by 

A = Z L w X; 
UP = uP = 1, uaux = spuTuff; 

uax = a{x)ua, uxx = T(X)UX for x in L. 

Then .4 is central simple over K and is a simple component of the group 
algebra Q[G~\ where G is the group of order p3rs generated by ua, ux9 sprs. 
We use this algebra for several examples. 

Let fr be the exponent of r mod s; that is, fr is the least positive integer ƒ 
such that rf = 1 mod s. Similarly let fs be the exponent of s mod r. 

THEOREM. (1) If p\fr then the r-local index of A is p. In particular A has 
index p if either p | fr or p \ fs. 

(2) If A has r-local index p and p2 divides either r — 1 or fr then A is not 
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