EXAMPLES IN THE THEORY OF THE SCHUR GROUP

BY CHARLES FORD AND GERALD JANUSZ

Communicated by Joseph J. Rotman, April 23, 1973
Let K be a subfield of a cyclotomic extension of the rational field Q. The Schur group of K is the subgroup $S(K)$ of the Brauer group of K consisting of those classes of central simple K algebras represented by an algebra which appears as a direct summand of a group algebra $Q[G]$ for some finite group G. For a prime p let $S(K)_{p}$ denote the subgroup consisting of elements having p-power order. It is known by [1] that $S(K)_{p}$ can have an element of order p^{a} only when a primitive p^{a} root of unity, $\varepsilon_{p^{a}}$, is in K.

Suppose K is a field which satisfies $Q\left(\varepsilon_{p^{a}}\right) \subseteq K \subseteq Q\left(\varepsilon_{n}\right)$ and p^{a} is the highest power of p dividing n. It is known that

$$
\begin{equation*}
S(K)_{p}=K \otimes S\left(Q\left(\varepsilon_{p^{a}}\right)\right)_{p} \tag{1}
\end{equation*}
$$

in the case $K=Q\left(\varepsilon_{n}\right)$. That is every element in $S(K)_{p}$ is represented by an algebra $K \otimes B$ with B central simple over $Q\left(\varepsilon_{p^{a}}\right)$ [2].
The assertion (1) also holds for K if p does not divide $\left(Q\left(\varepsilon_{n}\right): K\right)$. In this paper we present, for each prime p, fields K for which (1) does not hold.

Let p be a prime and r and s distinct primes such that $r \equiv s \equiv 1 \bmod p$. Then the field $L=Q\left(\varepsilon_{p}, \varepsilon_{r}, \varepsilon_{s}\right)$ has two nontrivial automorphisms σ, τ which satisfy
(i) $\sigma^{p}=\tau^{p}=1$
(ii) σ fixes ε_{p} and $\varepsilon_{r} ; \tau$ fixes ε_{p} and ε_{s}.

Let K be the subfield of L fixed by $\langle\sigma, \tau\rangle$. Let A be the algebra defined by

$$
\begin{gathered}
A=\sum L u_{\sigma}^{i} u_{\tau}^{j} ; \\
u_{\sigma}^{p}=u_{\tau}^{p}=1, \quad u_{\sigma} u_{\tau}=\varepsilon_{p} u_{\tau} u_{\sigma} ; \\
u_{\sigma} x=\sigma(x) u_{\sigma}, \quad u_{\tau} x=\tau(x) u_{\tau} \quad \text { for } x \text { in } L .
\end{gathered}
$$

Then A is central simple over K and is a simple component of the group algebra $Q[G]$ where G is the group of order $p^{3} r s$ generated by $u_{\sigma}, u_{\tau}, \varepsilon_{p r s}$. We use this algebra for several examples.

Let f_{r} be the exponent of $r \bmod s$; that is, f_{r} is the least positive integer f such that $r^{f} \equiv 1 \bmod s$. Similarly let f_{s} be the exponent of $s \bmod r$.

Theorem. (1) If $p \mid f_{r}$ then the r-local index of A is p. In particular A has index p if either $p \mid f_{r}$ or $p \mid f_{s}$.
(2) If A has r-local index p and p^{2} divides either $r-1$ or f_{r} then A is not

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 16A26; Secondary16A40, 20C05.

