EXAMPLES IN THE THEORY OF THE SCHUR GROUP

BY CHARLES FORD AND GERALD JANUSZ Communicated by Joseph J. Rotman, April 23, 1973

Let K be a subfield of a cyclotomic extension of the rational field Q. The Schur group of K is the subgroup S(K) of the Brauer group of K consisting of those classes of central simple K algebras represented by an algebra which appears as a direct summand of a group algebra Q[G] for some finite group G. For a prime p let $S(K)_p$ denote the subgroup consisting of elements having p-power order. It is known by [1] that $S(K)_p$ can have an element of order p^a only when a primitive p^a root of unity, ε_{p^a} , is in K.

Suppose K is a field which satisfies $Q(\varepsilon_{p^a}) \subseteq K \subseteq Q(\varepsilon_n)$ and p^a is the highest power of p dividing n. It is known that

(1)
$$S(K)_p = K \otimes S(Q(\varepsilon_{p^a}))_p$$

in the case $K = Q(\varepsilon_n)$. That is every element in $S(K)_p$ is represented by an algebra $K \otimes B$ with B central simple over $Q(\varepsilon_{p^a})$ [2].

The assertion (1) also holds for K if p does not divide $(Q(\varepsilon_n): K)$. In this paper we present, for each prime p, fields K for which (1) does not hold.

Let p be a prime and r and s distinct primes such that $r \equiv s \equiv 1 \mod p$. Then the field $L = Q(\varepsilon_p, \varepsilon_r, \varepsilon_s)$ has two nontrivial automorphisms σ, τ which satisfy

(i) $\sigma^p = \tau^p = 1$

(ii) σ fixes ε_p and ε_r ; τ fixes ε_p and ε_s .

Let K be the subfield of L fixed by $\langle \sigma, \tau \rangle$. Let A be the algebra defined by

$$A = \sum L u_{\sigma}^{i} u_{\tau}^{j};$$

$$u_{\sigma}^{p} = u_{\tau}^{p} = 1, \qquad u_{\sigma} u_{\tau} = \varepsilon_{p} u_{\tau} u_{\sigma};$$

$$u_{\sigma} x = \sigma(x) u_{\sigma}, \qquad u_{\tau} x = \tau(x) u_{\tau} \text{ for } x \text{ in } L.$$

Then A is central simple over K and is a simple component of the group algebra Q[G] where G is the group of order p^3rs generated by u_{σ} , u_{τ} , ε_{prs} . We use this algebra for several examples.

Let f_r be the exponent of $r \mod s$; that is, f_r is the least positive integer f such that $r^f \equiv 1 \mod s$. Similarly let f_s be the exponent of $s \mod r$.

THEOREM. (1) If $p \mid f_r$ then the r-local index of A is p. In particular A has index p if either $p \mid f_r$ or $p \mid f_s$.

(2) If A has r-local index p and p^2 divides either r - 1 or f, then A is not

AMS (MOS) subject classifications (1970). Primary 16A26; Secondary16A40, 20C05.

Copyright © American Mathematical Society 1974