EIGENFUNCTION EXPANSIONS FOR NONDENSELY DE-FINED OPERATORS GENERATED BY SYMMETRIC ORDINARY DIFFERENTIAL EXPRESSIONS¹

BY EARL A. CODDINGTON

Communicated by Fred Brauer, December 18, 1972

1. Nondensely defined symmetric ordinary differential operators. This note is a sequel to [2]; the notations are the same. Let L be the formally symmetric ordinary differential operator

$$L = \sum_{k=0}^{n} p_k D^k = \sum_{k=0}^{n} (-1)^k D^k \bar{p}_k, \qquad D = \frac{d}{dx},$$

where the p_k are complex-valued functions of class C^k on an interval a < x < b, and $p_n(x) \neq 0$ there. In the Hilbert space $\mathfrak{H} = \mathfrak{L}^2(a, b)$ let S_0 be the closure in \mathfrak{H}^2 of the set of all $\{f, Lf\}$ for $f \in C_0^{\infty}(a, b)$, the functions in $C^{\infty}(a, b)$ vanishing outside compact subintervals of a < x < b. This S_0 in a closed densely defined symmetric operator whose adjoint has the domain $\mathfrak{D}(S_0^*)$, the set of all $f \in C^{n-1}(a, b)$ such that $f^{(n-1)}$ is absolutely continuous on each compact subinterval and $Lf \in \mathfrak{H}$. For $f \in \mathfrak{D}(S_0^*)$, $S_0^*f = Lf$. If $M_0 = S_0^* \oplus S_0$, then

$$\dim(M_0)^{\pm} = \dim \mathfrak{D}((M_0)^{\pm}) = \dim v(S_0^* \mp iI) = \omega^{\pm},$$

say (v(T) = null space of T). Thus $0 \le \omega^{\pm} \le n$, and dim $M_0 = \omega^+ + \omega^- \le 2n$. Let \mathfrak{F}_0 be a subspace of \mathfrak{F} , dim $\mathfrak{F}_0 = p < \infty$, and define the operator S, with $\mathfrak{D}(S) = \mathfrak{D}(S_0) \cap (\mathfrak{F} \ominus \mathfrak{F}_0)$, via $S \subset S_0$. We see that (2.1) of [2] is satisfied and Theorem 1 of [2] is applicable to S. If $\omega^+ = \omega^- = \omega$, which we now assume, then Theorem 2 of [2] is also applicable. For $u, v \in \mathfrak{D}(S_0^*)$ we have Green's formula

$$\int_{y}^{x} (\bar{v}Lu - u\overline{Lv}) = [uv](x) - [uv](y),$$

where [uv] is a semibilinear form in $u, u', \ldots, u^{(n-1)}$ and $v, v', \ldots, v^{(n-1)}$. From this it follows that [uv](x) tends to limits [uv](a), [uv](b) as x tends to a, b. Then we may write

$$\langle uv \rangle = (Lu, v) - (u, Lv) = [uv](b) - [uv](a).$$

AMS (MOS) subject classifications (1970). Primary 47E05, 34B25.

Key words and phrases. Symmetric ordinary differential operator, eigenfunction expansion, symmetric system of ordinary differential operators.

¹ This research was supported in part by NSF Grant No. GP-33696X.