EIGENFUNCTION EXPANSIONS FOR NONDENSELY DEFINED OPERATORS GENERATED BY SYMMETRIC ORDINARY DIFFERENTIAL EXPRESSIONS ${ }^{1}$

BY EARL A. CODDINGTON
Communicated by Fred Brauer, December 18, 1972

1. Nondensely defined symmetric ordinary differential operators. This note is a sequel to [2]; the notations are the same. Let L be the formally symmetric ordinary differential operator

$$
L=\sum_{k=0}^{n} p_{k} D^{k}=\sum_{k=0}^{n}(-1)^{k} D^{k} \bar{p}_{k}, \quad D=\frac{d}{d x},
$$

where the p_{k} are complex-valued functions of class C^{k} on an interval $a<x<b$, and $p_{n}(x) \neq 0$ there. In the Hilbert space $\mathfrak{H}=\mathfrak{L}^{2}(a, b)$ let S_{0} be the closure in \mathfrak{S}^{2} of the set of all $\{f, L f\}$ for $f \in C_{0}^{\infty}(a, b)$, the functions in $C^{\infty}(a, b)$ vanishing outside compact subintervals of $a<x<b$. This S_{0} in a closed densely defined symmetric operator whose adjoint has the domain $\mathfrak{D}\left(S_{0}^{*}\right)$, the set of all $f \in C^{n-1}(a, b)$ such that $f^{(n-1)}$ is absolutely continuous on each compact subinterval and $L f \in \mathfrak{H}$. For $f \in \mathfrak{D}\left(S_{0}^{*}\right)$, $S_{0}^{*} f=L f$. If $M_{0}=S_{0}^{*} \Theta S_{0}$, then

$$
\operatorname{dim}\left(M_{0}\right)^{ \pm}=\operatorname{dim} \mathfrak{D}\left(\left(M_{0}\right)^{ \pm}\right)=\operatorname{dim} v\left(S_{0}^{*} \mp i I\right)=\omega^{ \pm}
$$

say $\left(v(T)=\right.$ null space of T). Thus $0 \leqq \omega^{ \pm} \leqq n$, and $\operatorname{dim} M_{0}=\omega^{+}+$ $\omega^{-} \leqq 2 n$. Let \mathfrak{H}_{0} be a subspace of \mathfrak{H}, $\operatorname{dim} \mathfrak{H}_{0}=p<\infty$, and define the operator S, with $\mathfrak{D}(S)=\mathfrak{D}\left(S_{0}\right) \cap\left(\mathfrak{G} \ominus \mathfrak{H}_{0}\right)$, via $S \subset S_{0}$. We see that (2.1) of [2] is satisfied and Theorem 1 of [2] is applicable to S. If $\omega^{+}=$ $\omega^{-}=\omega$, which we now assume, then Theorem 2 of [2] is also applicable. For $u, v \in \mathfrak{D}\left(S_{0}^{*}\right)$ we have Green's formula

$$
\int_{y}^{x}(\bar{v} L u-u \overline{L v})=[u v](x)-[u v](y)
$$

where $[u v]$ is a semibilinear form in $u, u^{\prime}, \ldots, u^{(n-1)}$ and $v, v^{\prime}, \ldots, v^{(n-1)}$. From this it follows that $[u v](x)$ tends to limits $[u v](a),[u v](b)$ as x tends to a, b. Then we may write

$$
\langle u v\rangle=(L u, v)-(u, L v)=[u v](b)-[u v](a) .
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 47E05, 34B25.
 Key words and phrases. Symmetric ordinary differential operator, eigenfunction expansion, symmetric system of ordinary differential operators.
 ${ }^{1}$ This research was supported in part by NSF Grant No. GP-33696X.

