BASIS GRAPHS OF PREGEOMETRIES

BY STEPHEN B. MAURER
Communicated by Gian-Carlo Rota, December 18, 1972

A combinatorial pregeometry, or matroid, may be defined as a finite set of elements E and a collection of bases \mathscr{B}, all subsets of E, such that for all $B, B^{\prime} \in \mathscr{B}$ and any $e^{\prime} \in B^{\prime}-B$, there exists $e \in B-B^{\prime}$ for which $B-e+e^{\prime} \in \mathscr{B}$. This exchange axiom suggests it is fruitful to represent a pregeometry \mathscr{M} by a graph: Let there be a vertex for each basis and an edge for each pair of bases differing by a single exchange. We get the basis graph $B G(\mathscr{M})$. A special case of this construct, tree graphs, has been studied for several years [3]. The more general situation has attracted attention only recently [1], [4].

Our purpose here is to announce our own studies of pregeometry basis graphs [6], [7], and to state some of our key findings. We have recently learned that some of our results and methods are similar to those discovered about the same time by Cunningham [2] and also by Holzmann, Norton and Tobey [5]. In particular, Theorems 2 and 3 below are in this category.

We first characterize basis graphs. Given any graph $G(\mathscr{V}, \mathscr{E})$, suppose $\delta\left(v^{\prime}, v^{\prime \prime}\right)=2$ and $\mathscr{V}^{\prime} \subset \mathscr{V}$ consists of $v^{\prime}, v^{\prime \prime}$ and all vertices adjacent to both. Then the induced subgraph $\left\langle\mathscr{V}^{\prime}\right\rangle$ is called the common neighbor subgraph $C N\left(v^{\prime}, v^{\prime \prime}\right)$, or simply a $C N$. In a basis graph each $C N$ is either a square (4-cycle), a pyramid (with square base), or an octahedron. Again in any graph, a leveling from v_{0} is a partition of \mathscr{V} into

$$
\mathscr{V}_{k}=\left\{v: \delta\left(v, v_{0}\right)=k\right\}, \quad k=0,1, \ldots
$$

In any leveling of a basis graph, each octahedral $C N$ lies in one of three positions: (i) all in one level; (ii) across two levels, three adjacent vertices in each; or (iii) across three levels, one vertex in the highest, one not adjacent to it in the lowest, and four in between. Any other $C N$ must lie as would an induced subgraph of such an octahedron. We call this the positioning condition. Finally, the neighborhood subgraph $N(v)$ is the induced subgraph on the vertices adjacent to v (v not included).

Theorem 1. G is a basis graph iff
(1) it is connected;
(2) each $C N$ is a square, pyramid or octahedron;

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 05B35; Secondary 05C05, 05C35, 05B20, 15A30.

 Key words and phrases. Pregeometry, matroid, basis graph, tree graph, combivalence class, pivoting.

