BOUNDARY BEHAVIOR OF THE CARATHÉODORY, KOBAYASHI, AND BERGMAN METRICS ON STRONGLY PSEUDOCONVEX DOMAINS IN Cⁿ WITH SMOOTH BOUNDARY

BY IAN GRAHAM

Communicated by Elias Stein, November 27, 1972

Let G be a bounded domain in C^n . Let Δ be the unit disk in C. Let $\Delta(G)$ be the set of holomorphic mappings from G to Δ , and $G(\Delta)$ the set of holomorphic mappings from Δ to G. The Carathéodory metric on G (i.e. the infinitesimal form, as in [7] is defined by

$$F_{C}(z,\xi) = \sup_{f \in \Delta(G)} |f_{*}(\xi)| = \sup_{f \in \Delta(G)} \left| \sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}}(z) \xi_{i} \right|, \qquad z \in G, \, \xi \in \mathbb{C}^{n}.$$

The Kobayashi metric on G (infinitesimal form) is defined by [8] $F_{\mathbf{K}}(z,\xi) = \inf\{\alpha | \exists f \in G(\Delta) \text{ with } f(0) = z, f'(0) = \xi/\alpha, \alpha > 0\}$. For the definition of the Bergman metric see [1] or [4]. We take

$$F_B(z,\xi) = (ds^2(z,\xi))^{\frac{1}{2}}$$

in the notation of [4].

We consider the boundary behavior of these metrics for fixed ξ . The notable features are (i) the different limiting behavior in tangential and normal directions (cf. Stein [9]), and (ii) the appearance of the Levi form as the limiting value of a quantity defined inside the domain.

THEOREM. Let G be a (bounded) strongly pseudoconvex domain in \mathbb{C}^n with \mathbb{C}^2 boundary. Let $z_0 \in \partial G$. Let φ be a \mathbb{C}^2 defining function for ∂G such that $|\nabla_z \varphi(z_0)| = 1$. Let $F(z, \xi)$ be either the Carathéodory or the Kobayashi metric on G. Then

$$\lim_{z \to z_0} F(z, \xi) d(z, \partial G) = \frac{1}{2} |\nabla_z \varphi(z_0) \cdot \xi| = \frac{1}{2} |\xi_N(z_0)|.$$

If $\nabla_z \varphi(z_0) \cdot \xi = 0$, i.e. ξ is a tangent vector to ∂G at z_0 , then

$$\lim_{z \to z_0; z \in \Lambda} (F(z, \xi))^2 d(z, \partial G) = \frac{1}{2} \mathcal{L}_{\varphi, z_0}(\xi) = \frac{1}{2} \sum_{i, j=1}^n \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j} (z_0) \xi_i \bar{\xi}_j.$$

 $d(z,\partial G)$ is the Euclidean distance to the boundary. $\nabla_z \varphi$ is the vector $(\partial \varphi/\partial z_1,\ldots,\partial \varphi/\partial z_n)$, and $\nabla_z \varphi(z_0)\cdot \xi=\sum_{i=1}^n (\partial \varphi/\partial z_i)(z_0)\xi_i=\xi_N(z_0)$ is the (complex) normal component of ξ at z_0 . Λ in the second limit denotes a cone of arbitrary aperture with vertex at z_0 and axis the interior normal to ∂G .

AMS (MOS) subject classifications (1970). Primary 32D15, 32H15; Secondary 32E30, 32H10.