Φ-LIKE ANALYTIC FUNCTIONS. I

BY LOUIS BRICKMAN1

Communicated by François Treves, November 16, 1972

The object of this paper is to introduce a very broad generalization, indeed a complete generalization of star-like and spiral-like functions. Our principal definition is the following.

DEFINITION 1. Let f be analytic in the unit disk $\Delta = \{z: |z| < 1\}$ of the complex plane with f(0) = 0, $f'(0) \neq 0$. Let Φ be analytic on $f(\Delta)$ with $\Phi(0) = 0$, Re $\Phi'(0) > 0$. Then f is Φ -like (in Δ) if

(1)
$$\operatorname{Re}(zf'(z)/\Phi(f(z))) > 0 \qquad (z \in \Delta).$$

REMARKS. 1. The two classical cases of Definition (1) are given by $\Phi(w) = w$ (f is star-like) and, more generally, $\Phi(w) = \lambda w$, Re $\lambda > 0$. (f is spiral-like of type arg λ .)

- 2. The conditions $\Phi(0) = 0$, Re $\Phi'(0) > 0$ on Φ are necessary for the existence of an f as described satisfying (1). Conversely, if Φ , analytic in a neighborhood of 0, has these two properties, then there exist Φ -like functions f. For the present we mention only the trivial example f(z) = az, where |a| is nonzero and sufficiently small.
- 3. In spite of the great generality of Definition 1, Φ -like functions are necessarily univalent in Δ (Theorem 1). Moreover the converse is true: Every function analytic and univalent in Δ and vanishing at 0 is Φ -like for some Φ (Corollary 1). Thus we shall obtain a characterization of univalence.
- 4. The definition immediately below will prove to be the geometric counterpart of Definition 1. (See Theorems 1 and 2.)

DEFINITION 2. Let Ω be a region containing 0, and let Φ be analytic on Ω with $\Phi(0) = 0$, Re $\Phi'(0) > 0$. Then Ω is Φ -like if for any $\alpha \in \Omega$ the initial value problem

(2)
$$dw/dt = -\Phi(w), \qquad w(0) = \alpha$$

has a solution w(t) defined for all $t \ge 0$ such that $w(t) \in \Omega$ for all $t \ge 0$ and $w(t) \to 0$ as $t \to +\infty$.

REMARKS. 5. If there is a solution of (2) on $[0, \infty)$, it is necessarily unique by a fundamental theorem on first order differential equations. For instance if $\alpha = 0$, then w(t) = 0 for all t.

AMS (MOS) subject classifications (1970). Primary 30A32, 30A36. Key words and phrases. Univalent-star-like, spiral-like, Φ-like.

¹ Partially supported by National Science Foundation Grant PO 19709000, and a State University of New York Faculty Fellowship.