SOME L GROUPS OF FINITE GROUPS

BY C. T. C. WALL
Communicated by Hyman Bass, October 24, 1972

If π is a finite group, define the modified Whitehead group $\mathrm{WH}^{\prime}(\pi)$ to be the quotient of $\operatorname{Im}\left(K_{1}(\boldsymbol{Z} \pi) \rightarrow K_{1}(Q \pi)\right)$ (the group of reduced norms of invertible matrices over $\boldsymbol{Z} \pi$) by the classes of $\pm g, g \in \pi$. Using classes in this, we have a concept of 'near-simple' homotopy equivalence, and a family of surgery obstruction groups, which we denote in this paper by $L_{n}(\pi)$.

Roughly speaking, $L_{0}(\pi)$ (resp. $L_{2}(\pi)$) is the Grothendieck group of nonsingular hermitian (resp. skew hermitian) forms over the group ring $Z \pi$, with involution defined by $g \mapsto w(g) g^{-1}(g \in \pi)$ for some homomorphism $w: \pi \rightarrow\{ \pm 1\} ; L_{1}(\pi)$ (resp. $L_{3}(\pi)$) is the commutator quotient group of the (stable) unitary group of such forms. The precise definition is given in [9] or (better) [10]. The 'orientable' case π^{+}is when w is trivial.

The object of this note is to announce the following calculations. For any abelian group G, we write ${ }_{2} G$ and G_{2} for the kernel and cokernel of $2: G \rightarrow G$.
(i) π of odd order. Write $R(\pi)$ for the complex representation ring of π, \bar{x} for the complex conjugate of x.
$L_{2 k+1}(\pi)=0$. The signature map on $L_{2 k}(\pi)$ has kernel $0(k$ even $), \boldsymbol{Z}_{2}$ (k odd), and image $\left\{4\left(x+(-1)^{k} \bar{x}\right): x \in R(\pi)\right\}$.
(ii) π abelian. Write N for the order of π, r for the 2 -rank, s for the number of direct summands of order 2 .

Special case. For some $x \in \pi, x^{2}=1$ and $w(x)=-1 . L_{n}(\pi) \cong L_{n}\left(Z_{2}^{-}\right) \oplus E$, where E is an elementary 2-group of $\operatorname{rank}\left(N / 2-N / 2^{r}-r+1\right) . L_{n}\left(\boldsymbol{Z}_{2}^{-}\right)=$ $0(n$ odd $)=Z_{2}(n$ even $)$.

General case. There is no such x. The image of the signature map on $L_{n}(\pi)$ is as in (i) for n even, π orientable, and 0 otherwise. The kernel has exponent 2 and rank

$$
\begin{array}{ll}
2^{r}-1-r-\binom{s}{2} & n \equiv 0,1(4), \\
1, & n \equiv 2(4), \\
2^{r}-1, & n \equiv 3(4) \text { orientable, }
\end{array}
$$

exponent 2 or 4 and order $2^{\left(2^{r}+2^{r-1}-1\right)}$ in the other case.
(iii) π dihedral of order $2 p$ (p an odd prime). Let K_{p} denote the maximal

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 10C05, 18F25, 20C05; Secondary 12A60, 16A40, 20G25, 57D65.

