SYSTEMS OF QUADRATICALLY COUPLED DIFFERENTIAL EQUATIONS WHICH CAN BE REDUCED TO LINEAR SYSTEMS

BY IRVIN KAY
Communicated by Fred Brauer, September 21, 1972

1. Introduction. Systems of ordinary differential equations with quadratic coupling have been used to model growth processes which occur in a number of otherwise unrelated physical applications (cf. [1], [2], [3]). Explicit solutions for the initial value problem have been obtained in certain cases when the coupling coefficients have been appropriately specialized (cf. [2], [3], [4]). This paper will consider a somewhat more general class of quadratically coupled systems for which the initial value problem can be reduced to that of a linear system.
2. Conditions for the reduction. The most general system of quadratically coupled differential equations over the complex field can be expressed in the form

$$
\begin{equation*}
\dot{x}^{i}+\sum_{j, k=1}^{n} \Gamma_{j k}^{i} x^{j} x^{k}+\sum_{j=1}^{n} A_{j}^{i} x^{j}=b^{i}, \quad i=1, \ldots, n . \tag{1}
\end{equation*}
$$

If the coefficients in (1) are constant and satisfy the relations

$$
\begin{equation*}
\sum_{j=1}^{n} \Gamma_{j k}^{i} \Gamma_{l m}^{j}=\sum_{j=1}^{n} \Gamma_{l j}^{i} \Gamma_{m k}^{j}, \tag{2a}
\end{equation*}
$$

and either

$$
\begin{equation*}
A_{j}^{i}=\sum_{k=1}^{n} \Gamma_{j k}^{i} a^{k} \tag{2b}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{j}^{i}=\sum_{k=1}^{n} \Gamma_{k j}^{i} a^{k} \tag{2c}
\end{equation*}
$$

where the a^{k} are the components of some constant vector a, then the solution to the initial value problem for (1) can be reduced to that for a linear system with constant coefficients.

The requirement ($2 a$ a) is the necessary and sufficient condition that the $\Gamma_{j k}^{i}$ be the structure constants for an n dimensional algebra (cf. [5]). In particular, the n matrices $\Gamma_{k}, k=1, \ldots, n$, whose elements are $\Gamma_{j k}^{i}$, them-

[^0]
[^0]: AMS(MOS) subject classifications (1970). Primary 34A05; Secondary 34A30, 15A24, 15A30.

