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We shall be concerned with the autonomous differential equation 

(1.1) u\t) + Au(t) = 0, M(0) = x, 

where A is a weakly continuous possibly nonlinear operator mapping a 
reflexive Banach space X to itself. Recently S. Chow and J. D. Schuur [2] 
have considered existence theory for ordinary differential equations 
involving weakly continuous operators on separable, reflexive Banach 
spaces. 

We now make clear our notion of strong solutions to (1.1). 
DEFINITION 1.2. A function u: [0, T) -> X is said to be a strong solution 

to the Cauchy problem 

u\t) + Au(t) = 0, w(0) = x, 

provided that u is Lipschitz continuous on each compact subset of [0, T), 
w(0) = x, u is strongly diflerentiable almost everywhere and 
u\t) + Au(t) = 0 for a.e. t e [0, T). 

By employing a variant of the Peano method we provide local solution 
to (1.1). 

LEMMA 1.3. Let X be a reflexive Banach space and suppose that A is a 
weakly continuous operator with D(A) = X. Then there is a finite interval 
[0, T) such that the Cauchy problem (1.1) has a strong solution on [0, T). 

DEFINITION 1.4. An operator A is said to be accretive provided that 
||x + XAx - (y + XAy)\\ ^ ||x - y\\ for all X ^ 0 and x, y e D(A). T. Kato 
[5] has shown that this definition is equivalent to the statement that 
Re(^x — Ay,f) ^ 0 for some feF(x — y) where F is the duality map 
from X to X*. 

If we require that the operator A be accretive we are able to extend the 
local solution of Lemma 1.3 to a global solution. 

THEOREM 1.5. Let X be a reflexive Banach space and suppose that A is a 
weakly continuous accretive operator with D(A) = X. Then the Cauchy 
problem (1.1) has a unique strong global solution on [0, oo). 
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