PERIODIC AND HOMOGENEOUS STATES ON A VON NEUMANN ALGEBRA. II¹

BY MASAMICHI TAKESAKI

Communicated by Jacob E. Feldman, August 15, 1972.

This paper is a natural continuation of the previous paper [9]. In [9], we proved a structure theorem for a von Neumann algebra with a fixed periodic and homogeneous state. In this paper, we will show that the structure theorem in [9] determines intrinsically the algebraic type of a factor with a periodic and *inner* homogeneous state (see Definition 1). We keep the terminologies and the notations in [9].

DEFINITION 1. A normal state φ on a von Neumann algebra \mathcal{M} is said to be *inner homogeneous* if $G(\varphi) \cap \text{Int}(\mathcal{M})$ acts ergodically on \mathcal{M} , that is, if the group of all inner automorphisms of \mathcal{M} leaving φ invariant has no fixed points other than the scalar multiples of the identity.

For each $a \in \mathcal{M}$, we write

$$\operatorname{Ad}(a)x = axa^*, \quad x \in \mathcal{M}.$$

Since $\operatorname{Ad}(u) \in G(\varphi)$ for a unitary $u \in \mathcal{M}$ if and only if u falls in \mathcal{M}_{φ} , the centralizer of φ , the inner homogeneity of φ is equivalent to the fact that $\mathcal{M}'_{\varphi} \cap \mathcal{M} = \{\lambda 1\}$. Hence \mathcal{M}_{φ} is a II₁-factor and \mathcal{M} itself is also a factor.

We consider two periodic and inner homogeneous faithful normal states φ and ψ on \mathcal{M} . We denote by $\{\mathcal{M}_n^{\varphi}: n = 0, \pm 1, ...\}$ and $\{\mathcal{M}_n^{\psi}: n = 0, \pm 1, ...\}$ the decompositions of \mathcal{M} in [9, Theorem 11] corresponding to φ and ψ respectively. By [9, Theorem 13], φ and ψ have the same period, say T > 0. Let $\kappa = e^{-2\pi/T}$, $0 < \kappa < 1$.

Following Connes' idea, we consider the tensor product $\mathscr{P} = \mathscr{M} \otimes \mathscr{L}(\mathfrak{H}_2)$ of \mathscr{M} and the 2 × 2-matrix algebra $\mathscr{L}(\mathfrak{H}_2)$. Let $\{e_{i,j}: i, j = 1, 2\}$ be a system of matrix units in $\mathscr{L}(\mathfrak{H}_2)$. Every $x \in \mathscr{P}$ is of the form

$$x = x_{11} \otimes e_{11} + x_{12} \otimes e_{12} + x_{21} \otimes e_{21} + x_{22} \otimes e_{22},$$

where $x_{ij} \in \mathcal{M}$. We define a faithful state χ on \mathcal{P} by

$$\chi(x) = \frac{1}{2}(\varphi(x_{11}) + \psi(x_{22})).$$

Connes showed in [3] that there exists a strongly continuous one-

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 46L10.

Key words and phrases. von Neumann algebras, modular automorphism group, periodic state, homogeneous state, inner homogeneous state.

¹ The preparation of this work was supported in part by NSF grant no. GP33696X.