THE RADIUS OF CONVEXITY FOR A SPECIAL CLASS OF MEROMORPHIC FUNCTIONS

BY DOROTHY BROWNE SHAFFER

Communicated by E. Isaacson, June 15, 1972
Let Σ denote the class of functions $F(\zeta)=\zeta+a_{0}+a_{1} / \zeta+\cdots$ regular in $1<|\zeta|<\infty$. In this paper the radius of convexity for the subclass Σ_{α} defined by the additional condition $\operatorname{Re} F^{\prime}(\zeta)>\alpha$, where $0 \leqq \alpha<1$, is determined. The results are sharpened for functions with missing terms in the expansion. The proofs are based on inequalities for analytic functions established by the author [3]. The functions $F(\zeta)$ are not assumed to be schlicht; in fact, the extremal functions for $\alpha<\frac{1}{2}$ will not be schlicht. It is not known whether the univalence of $F(\zeta)$ follows from the condition $\operatorname{Re} F^{\prime}(\zeta)>\frac{1}{2}$ for $R_{c}>|\zeta|>R>1$. The radius of convexity $\left(R_{c} \sim 1.78\right)$ for the class Σ with the assumption of schlichtness is due to Goluzin [1, p. 136]; Robertson [2, Theorem 4] found $R_{c}=3^{1 / 2}$ for the subclass of schlicht and starlike functions. It will be shown that: for the class $\Sigma_{1 / 2}, R_{c}=3^{1 / 2} ;$ and $R_{c}<3^{1 / 2}$ for $\alpha>\frac{1}{2}$.

THEOREM 1. The radius of convexity, R_{0}, for functions $F(\zeta) \in \Sigma_{\alpha}$ is given by

$$
\begin{equation*}
R_{0}^{2} \leqq\left\{\left[(3+c)^{2}+4 c\right]^{1 / 2}+(3+c)\right\} / 2 \tag{1}
\end{equation*}
$$

where $c=1-2 \alpha$.
Proof. Let

$$
\begin{equation*}
h(z) \equiv F^{\prime}(1 / z)=1+b_{1} z^{2}+\cdots \tag{2}
\end{equation*}
$$

From [4, Theorem 7], we have

$$
\left|\frac{h^{\prime}(z)}{h(z)}\right| \leqq \frac{2(1+c)|z|}{\left(1+c|z|^{2}\right)\left(1-|z|^{2}\right)} \text { for }|z|<1 .
$$

By differentiation of (2) we obtain

$$
z h^{\prime}(z) / h(z)=-\zeta F^{\prime \prime}(\zeta) / F^{\prime}(\zeta)
$$

The condition for convexity $\operatorname{Re}\left(\zeta F^{\prime \prime}(\zeta) / F^{\prime}(\zeta)+1\right) \geqq 0$ will be satisfied if

$$
2(1+c)|z|^{2} \leqq\left(1+c|z|^{2}\right)\left(1-|z|^{2}\right)
$$

This is equivalent to $|\zeta|>R_{0}$.
Let $p^{0}(z)=\left(1+c z^{2}\right) /\left(1-z^{2}\right)$, then $F^{0}(\zeta)=\zeta+[(c+1) / 2][\log (\zeta-1) /(\zeta+1)]$

[^0]
[^0]: AMS (MOS) subject classifications (1969). Primary 3010.

